• 締切済み

微分の仕方

下記の微分方法を考えているのですが、なかなか思う回答へ導けません。 どうしたらよいのでしょうか? d/dt {1/|P’(t)×P''(t)|} P(t)は3次元ベクトルで、P’(t)はP(t)を一回微分していることをさします。 P’(t)×P''(t)は外積×で、||はノルムをあらわします。

noname#38655
noname#38655

みんなの回答

  • rabbit_cat
  • ベストアンサー率40% (829/2062)
回答No.1

a,bを3次元ベクトルとして、 d/dt(a・b) = d/dt(a)・b + a・d/dt(b) 内積 d/dt(a×b) = d/dt(a)×b + a×d/dt(b) 外積 |a| = √(a・a) なんかを使って、地道にやってけばできるのでは。

関連するQ&A

  • ベクトル(外積)の微分の証明

    ベクトル微分があまりにもわかっていないので、誰か助けてください。 内積の微分はなんとなく理解できるんですが、外積の微分となると内積との違いがよくわかりません。成分ごとの説明で、正しく証明できているのでしょうか? また、rがベクトルの場合、 d/dt(r*(dr/dt))=r*(d^2r/dt^2) は、どのように証明が出来るのでしょうか? 感覚的には理解できるのですが、イイ説明方法が出来る方、よろしくお願いします。

  • この微分の解き方

    熱力学第2法則の”熱力学的関係式の例(物理入門コース7、熱・統計力学,p68) d/dv (1/T dU/dT) = d/dT { 1/T (dU/dV + P)} の計算結果は下記のようになるとのことですが、 (dU/dV)t = T (dP/dT)v - P *t,v は編微分がT(温度),V(体積)が一定の条件で編微分が行われたことを示します。 この導き方をどなたか教えて頂けないでしょうか?

  • 内積の微分の証明

    内積の微分の式が、普通の関数の積の微分と同じ式で表されることを示す、という問題です。 u(t),v(t)(ともにベクトル)がR^2上に値を持つ関数のとき、 (d/dt)(u(t)・v(t))=(du(t)/dt)・v(t)+u(t)・(dv(t)/dt) を示せ。 積の微分を用いて示せるらしいんですけど、ベクトルのときも積の微分を導くみたいに u(t+Δx)とかで微分の定義式に入れてしまえば良いのでしょうか??

  • 微分について

    dx/dt=1-cost,dy/dt=sintのとき、d^2y/dx^2を求めよ。という問題がありました。 d^2y/dx^2=dt/dx・d/dt・dy/dxと合成微分します。 ここで回答にはd/dt・dy/dxを一塊として微分していました。 自分はdt/dx・dy/dxをtの関数で表し、tで微分しました。すると出てくる値が違います。 なぜこのやり方ではいけないのでしょうか?

  • 微分・積分 問題

    微分・積分 問題 d^2/dx^2(∫[0→x](x-t)f(t)dt)=f(x)を証明せよ。 x・∫[0→x]f(t)dt-∫[0→x]t・f(t)dtとしました。 上の式を積分して、2回微分しようと考えているのですが、 ∫[0→x]t・f(t)dtが分かりません。 d/dx(x・∫[0→x]f(t)dt)-d/dx(∫[0→x]t・f(t)dt)と1回微分して、さらにもう一度微分を行うと、d/dx(∫[0→x]f(t)dt+xf(x)-xf(x)) よって、d/dx(∫[0→x]f(t)dt=f(x) 解き方は合っているでしょうか? ご回答よろしくお願い致します。

  • これらの数式を声に出して読むとき、どう読みますか?

    これらの数式を声に出して読むとき、どう読みますか? (1)2回微分 d^2 x/dt^2 = a (2)微分および合成関数の微分 dy/dx = dy/dt・dt/dx ("・"は便宜上付けたものなので読まないでください) (3)偏微分 ∂y/∂x (4)2回偏微分(の演算子) ∂^2/∂x^2 (5)ベクトルの内積 A→・B→ (6)ベクトルの外積 A→×B→ できるだけ沢山の方々の意見をお聞きしたいです。 同じ回答がいくつあっても結構です。 (ポイントは、6つ中4つ以上の回答をしていただいた方の中から  抽選で差し上げる予定です。)

  • 微分可能なのに尖ってる?

    (ベクトルを全角大文字で書きます。) 『 パラメータtで表されるベクトルX = Φ(t)がt0で微分可能とは Φ(t) = Φ(t0) + Α(t - t0) + Θ(t) lim(t→t0) |Θ(t)|/(t - t0) = 0 なるΘ(t)が存在する事である 』 と、物の本で読みました。 そして微分可能な時 Α = Φ'(t0)を微分係数といい、t0での接線の方向ベクトル、 dX = Φ'(t0)dtを微分と言い、接線の方程式だそうです。 なるほどと納得してみたのですが実際の問題に当たったら不可解な点が出てきました。 X = (cos^3 t, sin^3 t) というものです。きっと名前も付いてるような有名な図形だとは思うのですが。 dX = (-3 cos^2 t sin t, 3 sin^2 t cos t) dt で一見微分可能なのですが、Excelで図形を書いてみた所、 (1,0),(0,1),(-1,0),(0,-1)の4点で尖ってるんです。 微分可能なのに尖ってるってどう言う事?とdXを見直してみた所、確かにこの4点ではdX = 0となります。 でも Θ(t) = (cos^3 t - 1, sin^3) とおくと、計算すれば分かりますが lim(t→0) Θ(t)/t = 0 が成り立ってるので定義から微分可能と言う事になります。 と言う事は、「見た目には尖って見えても微分可能である」と言う事があり得ると考えていいのでしょうか?

  • 積の微分法則につきまして

    積の微分法則につきまして質問があります. ご回答をお願いできましたら幸いです. a*Sinθ ※a=a(t),θ=θ(t) 以上の数式を,まずtで一階微分しますと積の微分法則を利用して d/dt(a*Sinθ)=da/dt*Sinθ+a*dθ/dt*Cosθ となるかと思います. 次に,さらにtで一階積分しますと,第一項目は d^2a/dt^2*Sinθ+da/dt*dθ/dt*Cosθ となると思うのですが,問題は第二項目の「a*dθ/dt*Cosθ」で, この様な式には,どのように積の微分法則を利用するのでしょうか? 恐らくは積の微分法則を細分化して使用,つまり (a*dθ/dt)’*(Cosθ)+(a*dθ/dt)*(Cosθ)’ =[{(a)’*dθ/dt}+{a*(dθ/dt)’}]*(Cosθ)+(a*dθ/dt)*(Cosθ)’ =略 のようになるかと思うのですが,この考え方で宜しいのでしょうか? さらに念のための確認ですが d/dt(da/dt)=d^2a/dt^2 は (da/dt)^2≠d^2a/dt^2 ですよね? 非常に幼稚な質問かとは思いますが,ご回答をお願いできましたら幸いです.

  • 連立常微分方程式

    x(t)をn次元ベクトル、A(t)をn次正方行列として、 dx/dt=A(t)x (1) なる連立微分方程式を考えます。 関数の行列V(t)の各列ベクトルが式(1)の解で、V(t)が正則であるとき、 V(t)を基本行列と呼びます。 V1(t),V2(t)が式(1)の基本行列のとき、定数の正則行列について V1(t)・T=V2(t) (2) が成り立つことを証明するには、 d(V1^{-1}・V2)/dt=0 (3) を示せばV1^{-1}・V2=T(定数行列)となって、(2)を証明できるのですが、 どうすれば(3)が示せるのかわかりません。

  • 連立微分方程式の解き方を教えてください.

    連立微分方程式の解き方を教えてください. 2d(^2)y/dt^2-dx/dt-4y = t 4dx/dt+2dy/dt-3x = 0 ヒントとしてtで一回微分するとよいとありました. まだ勉強を初めて間もないので,解法が本当にわかりません. お手数ですが,御教授よろしくお願いいたします.