同次形の微分方程式についての理論的背景を知りたい

このQ&Aのポイント
  • 同次形の微分方程式についてy=xuと置けば解けるというだけでは学習者に欲求不満が残るのではないかと疑問に思っています。
  • 同次形の微分方程式に関して、x.yに関してy=xuと置けという指示がある理論的背景について書いている本はほとんどありません。
  • 同次形の微分方程式のy=xuとの関係について学ぶ際、単に計算テクニックとしてそのように覚えればよいのか、または他に理論的な背景があるのか知りたいです。
回答を見る
  • ベストアンサー

同次形の微分方程式ついて(その2)(「解析学序説(上)」 )

NO.1967222(2006年2月15日)で同次形の微分方程式ついて質問させていただきたものです。その節はたいへんありがとうございました。 その時、いろんな参考書を調べていてふっと思ったのですが、x.yに関して同次形の微分方程式についてはy=xuと置けという指示があるのですが、なぜそれでいいのかということについての理論的背景をすこしでも書いている本はほとんどありませんでした。(10冊以上の参考書を見てみましたが2冊だけでした。) これは不思議な気がしました。単にy=xuと置けば解けるというだけでは学習者に欲求不満が残るのではないでしょうか。それとも単に計算テクニックとしてそのように覚えればよいというほどの分野に過ぎないということなのかなとも思いますが。 この辺の事情について教えてくださるとありがたいです。 なお、念のために同次形の微分方程式について私が以前に出した質問を下に引用しようとしたのですが、質問が800字を超えてしまいますので、省略させていただき、NO.1967222(2006年2月15日)同次形の微分方程式ついて(「解析学序説(上)」 ) http://oshiete1.goo.ne.jp/kotaeru.php3?q=1967222 を参照ください。 よろしくお願いいたします。

質問者が選んだベストアンサー

  • ベストアンサー
  • rinkun
  • ベストアンサー率44% (706/1571)
回答No.1

微分方程式の解法についてはもともと発見的要素が強く、理論的背景はあっても後付けのものと思います。 だから、そうすればうまくいくから、以上の説明は難しい部分が多いと思います。

skylark
質問者

お礼

さっそくのご回答、感謝いたします。 >微分方程式の解法についてはもともと微分方程式の解法についてはもともと発見的要素が強く、理論的背景はあっても後付けのものと思います。 確かに微分方程式の勉強をしていると「発見的要素」を感じます。その辺が本の書き方にも現れてくるのでしょうね。 どうもありがとうございました。

関連するQ&A

  • 同次形の微分方程式ついて(「解析学序説(上)」 )

    よろしくお願いいたします。 【記号の説明】 定数 c については、c^(-λ) は「c のマイナスλ乗」を、 変数 x、y, u については 1 y^(n)などは y のn階微分を、 2 x^《n》はxのn乗を、 それぞれ、あらわします。 同書からの引用部分は『・・・』で示してあります。 「容易に階数降下のできる高階常微分方程式」という節の中に「同次形(の常微分方程式)」の項目があります。 『(λを定数として)、 x,y について同次形 (*) c^(-λ)F(cx,cy,y',c^(-1)y",...,c^(1-n)y^(n))= F(x,y,y',...,y^(n)) のときは、c=1/x とおけば、 (**) f(y/x,y',xy",...,x^《n-1》y^(n))=0 の形になる。そこで、y=xu とおくと、y'=xu'+u, y"=xu"+2u',...,一般にライプニッツの公式で y^(k)=xu^(k)+ku^(k-1) で、ゆえに、x^《k-1》y^(k)=x^《k》u^(k)+kx^《k-1》u^(k-1)となり、x についての同次形、すなわち(***)の場合(下記)に帰着された。』 x^《k-1》y^(k)=・・・までは分かるのですが、それから直ちにx についての同次形と結論できるのが、どうしても分かりません。(**)の左辺に、y, y', y", x^《k-1》y^(k), の右辺や、x=1/c を代入して、なんとか(***)が成立することを示そうとしたのですが、うまくいきませんでした。 なお、x についての同次形というのは (***)c^(-λ)F(cx,y,c^(-1)y',...,c^(-n)y^(n))= F(x,y,y',...,y^(n)) が成り立つことを言います。 どうぞよろしくお願いいたします。

  • 同次形高階微分方程式について

    同次形高階微分方程式について 同次形高階微分方程式の単元を読んでいますと、「y,dy,d2y について同次の場合」とか「x,dx について同次の場合」とあるのですが、式を見てy,dy,d2y について同次なのか、x,dx について同次なのか判断できません。具体的には、 xy(d2y/dx2)-x(dy/dx)^2+y(dy/dx)=0 はy,dy,d2y について2次の同次形で、x^2(d2y/dx2)+x(dy/dx)+y=0 はx,dx について0次の同次形 であるとありますが、どのように判断すればよろしいのでしょうか?

  • 同次形の微分方程式

    教科書の同次形の微分方程式の例題の一つです。 (x+2y)dx+ydy=0を解け という問題で y=vxとおくとなぜdy=vdx+xdvといえるのでしょうか? 教えてください。

  • 同次形の微分方程式

    おそらく同次形の一階の微分方程式の問題で xy' = y + √(x^2-y^2) というもんだいをといてみました(勝手に同次形で・・・w) 最終的に arcsin(y/x) = log|x| + C (C;a.c) とまでいったので±e^(-C)=αとして x = α exp(arcsin(y/x)) にしたんですけども解答では y + √(y^2 + x^2) = βx^2 という形になっているのですが、どうしたらこんな形の一般解を 導くことができるのでしょうか。 アドバイスお願いします!

  • 微分積分(同次形)について

    以下の問題の考え方、過程を教えてください。 1.微分方程式 xy y' + X^2 + y^2 - xy = 0 は同次形か? 2.微分方程式 x^2 y'=y^2 + x^2 y は同次形か? 1.2ともy'=の式に直して式変形しましたが 1は1-(x/y)-(y/x) 2は(y/x)^2 + y となりましたがどちらもy' = f(y/x)の形になりません。

  • 同次形微分方程式について

    同次形微分方程式がわかりません (1) (3x+2y-5)y'=2x-3y+1 と (2) (x+y+1)+(2x+2y-1)y'=0 の解き方なのですが、解どおりになりません。 座標軸の平行移動を行った後に、 同次系に直して積分すると (1)は logx+c==-1/2log(2v^2-6v+2) で解の y^2+3xy-x^2-x-5y と違う間違った解になってしまい (2)はx+y=u (1+y'=u')と置いて解いていくと (u+1)(2u-1)(u'-1)=0 u'=1 で解の 3log(x+y-2)+x+2y=c と違う間違った解になってしまいます。 どこが間違っているのかわかりません。 どなたかアドバイス御願いします ・追伸 この間の別の質問の件で回答してくださった方へ。 質問の仕方が悪かったので、削除対象になってしまいお礼ができませんでした。申し訳ありません。 回答は大変助けになり感謝しています

  • 微分方程式

    次の同次形の微分方程式はどのように解けばいいのか教えてください。 どうぞ宜しくお願いします。 x*y"+y'=0

  • 微分方程式の同次形

    微分方程式の同次形って (y/x)の形をつくって、そこから y/x=u とおいて計算してくじゃないですか。 その後に、dy/dx=u+x(du/dx) となるのはなぜなのでしょうか? dy/dx=uとなるなら納得するんですが、その後に加わっているx(du/dx)はどういった考え方をすれば出てくるのでしょうか? dy/dx=u+x(du/dx)から考えてみても、y=uxにならないんですよね。 考え方を教えてください。

  • 1階非同次微分方程式の一般解について

    1階非同次微分方程式の一般解の解釈について不明点がございます。 一般化した1階非同次微分方程式:y' + p(x)y = q(x)の一般解は y = e^(-∫p(x)dx) * ∫q(x)e^(∫p(x)dx)dx + ce^(-∫p(x)dx) で表されるのは理解できるのですが、この一般解が非同次微分方程式の特殊解と同次微分方程式の一般解の和になっていることが理解できません。 つまり右辺の1項目、e^(-∫p(x)dx) * ∫q(x)e^(∫p(x)dx)dx が非同次方程式の特殊解になる理由がわかりません。 個人的に考えるに右辺の2項目のcが-∞~∞まで全ての値をとることが可能なので c=0の場合に、右辺の1項目は非同次方程式の特殊解になる、と勝手に推測しているのですがその考えでよろしいでしょうか? どなたかその辺詳しい方がいらっしゃいましたら是非ご教授お願い致します。

  • 同次形微分方程式

    下の“微分方程式を解け”という問題がわかりません。 (1) (x+y)+(x-y)(dy/dx)=0 (2) xy(dy/dx)=x^2+y^2 この2つなんですが、一応、同次形微分方程式の範囲なので y/xの形にしてみたんですが・・・ (1) (x-y)(dy/dx)=-(x+y) (dy/dx)=-(x+y)/(x-y) 右辺の分母分子をxで割る (dy/dx)=-(1+y/x)/(1-y/x) y/x=uとおくとy=xuよって(dy/dx)=u+x(du/dx) よって u+x(du/dx)=-(1+u)/(1-u) x(du/dx)=-(1+u)/(1-u) -u x(du/dx)=-(1+u^2)/(1-u) (1-u)du/(1+u^2)=(1/x)dx 両辺を積分というとこの左辺のせきぶんがわかりません。 というかここまでまちがってるかもしれません。 (2) (dy/dx)xy=x^2+y^2 両辺をx^2でわる。 (dy/dx)(y/x)=1+(y/x)^2 y/x=uとおくとy=xuよって(dy/dx)=u+x(du/dx)よって u+x(du/dx)=(1+u^2)/u x(du/dx)=(1+u^2)/u -u x(du/dx)=(1/u) udu=(1/x)dx  両辺を積分 (1/2)u^2=logx+C よって(1/2)(y/x)^2=logx+C y^2=2x^2(logx+C) となり、とりあえず答えは合いました。過程はあってますか? あと、最終的な答えの形なんですがy=で答えるとかx=で答えるとか ってありますか?