- 締切済み
- すぐに回答を!
代数学の問題
f:G→G'を準同型とする。 (1)Imf⊆G'を示せ (2)KerfがGの正規部分群になることを示せ (3)このfに対する準同型定理を説明せよ(説明不要) という問題なのですがどうしてもわかりません。 解答もなく困っています。 どなたか教えていただけないでしょうか? よろしくお願いいたします。
- oshietegoogle
- お礼率12% (27/219)
- 数学・算数
- 回答数1
- ありがとう数1
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- 回答No.1
- ojisan7
- ベストアンサー率47% (489/1029)
代数学の本は持っていますか。持っていなければ、何か購入してください。その本に上の(1)~(3)は全部書いてあると思います。ただ、(1)は、あたりまえのことなので、載っていないかも知れませんが。
関連するQ&A
- 代数学の、群の問題を教えて下さい。
nは正の整数とする。Gは位数nの巡回群とする。この問題では、GはZ/nZに同型であることを示す。 (1)Gの生成元xをとり(つまりG=<x>)、群の準同型定理f:Z→Gをm∈Zに対してf(m)=x^mで定める。このときfは全射であることを示しなさい。またKerf=nZであることを示しなさい。 (2)fに準同型定理を適用して、Z/nZ≃Gを示しなさい。 という問題です。お願いします。
- ベストアンサー
- 数学・算数
- 群論の同型定理について
同型定理Bの証明について分からないので教えてください。 画像内の証明は参考書の証明です。 この過程が分かりません。 埋め込み写像とか、写像iやρが準同型になる理由など… KerfやImfが分かったところで、なぜ正規部分群になるのでしょうか? 1行ずつ分かりやすく説明していただけたら助かります。 正規部分群、核および像、準同型定理がどういうものかはなどは理解しています。 色々と分からないのですがよろしくお願いします。
- 締切済み
- 数学・算数
- 大学の数学(代数)の問題です。
問)群G1からG2への写像f:G1→G2は群準同型写像であるか。群準同型写像であるならばfの像Imf及び核Kerfを求め、群準同型写像でなければその理由を述べよ。(Snをn次対称群、Zは整数全体のなす集合あるいは加法群) (1)G1=S5、G2=Z;f(σ)=l(σ)(σ∈S5)。ここに、l(σ)はσを互いに素な巡回置換の積で表した時に現れる、長さの最も大きい巡回置換の長さ。 (2)G1=Z/9Z、G2=Z/3Z;f(x+9Z)=2x+3Z(x∈Z) です。誰かわかる方解答よろしくお願いします。
- 締切済み
- 数学・算数
- 同型写像
線形写像の基本定理 線形写像f:V→V'について、次の基本定理が成り立つ。 (1)V/Kerf~=Imf……(*) (V/Kerf:商空間、Imf=f(v)) 次に、(1)を次元で考えると、次のようになる。 (2)dimV-dim(Kerf)=dim(Imf)……(**) これらの定理を用いて構わないので、「dimV=dimV'ならば、V~=V'となることを 証明しなさい。」という問題です。同型の記号が出ないので変になってますけど 気にしないでください(笑)。 VがV'と同型でないと仮定する。同型であるならば、Kerf={0}かつImf=V'が成り立 つので、そのときdim(Kerf)=0,dim(Imf)=dimV'である。よって、基本定理(**) から、 dimV-0≠dimV' ∴dimV≠dimV'となり、これは前提条件に反する。よって、dimV=dimV'ならば、V ~=V'となる。(証明終) たぶん私の解答は間違っていると思われるので、正しい解法を教えてください。
- ベストアンサー
- 数学・算数
- 次の代数学の真偽について教えて下さい(理由も)
1.有限個の元からなる巡回群の位数は素数である。 2.同じ素数を位数とする有限群GとG'は同型である。 3.Snの偶置換全体からなる部分集合はSnの部分群である。 4.Snの奇置換全体からなる部分集合はSnの部分群である。 5.群Gの指数2の部分群は正規部分群である。 6.群の準同型写像f:G→G'の像Im(f)はG'の正規部分群だ。 7.群の準同型写像f:G→G'の核Ker(f)はGの正規部分群だ。
- ベストアンサー
- 数学・算数