• 締切済み
  • すぐに回答を!

代数学の問題です。

わからないので教えてください 。N≥4を偶数として、H=D_n∈S_ nおよびN=A_nとします。これを 第2同型定理を用いて、HN=S_n を示してください。 第2同型定理 HおよびNをGの部分群とし、N を正規部分群とすると、 H∩NはHの正規部分群となる。 同型写像 H/(H∩N)≅NH/N が存在する。 わからないので教えてくたさい!よろしくお願いします。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1

H が G の部分群であるとき, H < G, N が G の正規部分群であるとき, N ∇ G, とかくことにします。 H = D_n (ただし, n は4以上の偶数), N = A_n, G = S_n, とおく。 H < G, N ∇ G, H ∩ N ∇ H, が成り立つ。 群 H/(H ∩ N) = { 1, x } から 群 G/N = { 1, y } への写像 θ を, θ(1) = 1, θ(x) = y と定義すると, θ は同型写像になる。 よって, H/(H ∩ N) と G/N は同型。 また, 第2同型定理より, H/(H ∩ N) と HN/N が同型。 これらより, HN/N と G/N も同型。 よって, HN = G が成り立つ。 実は, 第2同型定理を使わなくても, 簡単に証明できます。 σ を G の任意の元とする。 σ が偶置換なら, σ ∈ N ⊂ HN σ が奇置換なら, H の元のうち, 奇置換 τ を取る。 このとき, τσ ∈ N よって, τ^(-1)(τσ) = σ ∈ HN "n は4以上の偶数," という条件を使った場所がどこなのか, 考えてみてください。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 代数学の、正規部分群の問題を教えて下さい。

    Gを群、HをGの部分群、NをGの正規部分群とする。 (1)NはHN:={hn|h∈H,n∈N}の正規部分群になっている事を示しめしなさい。 (2)剰余群HN/NとH/(H∩N)は同型である事を示しなさい。 という問題です。 お願いいたします。

  • 代数学の問題

    1.A=(1,2,3) B=(1,2,3,4)のとき、AとBは1対1対応にならないことを示せ 2.準同型写像f:G⇒G'において像f(G)はG'の部分群であることを示せ。 3.群Gの中心ZはGの正規部分群であることを示せ。 4.NをGの正規部分群、PをGの一つのpシロー群とすると、NP/NはG/Nのpシロ  ー群であることを示せ。 レポート問題を合格はしていますが、ここの問題を白紙で出して合格したので結局わからないまま講義を終えてしまいました。 教科書を読んでもよくわからないので、解説をお願いします。

  • 代数学 群の問題

    Gをアーベル群、eをGの単位元、kを整数とする。 (1)H={g^k|g∈G}はGの部分群であること (2)N={g∈G|g^k=e}はGの正規部分群であること (3)剰余群G/NはHと同型であること 上記3つを示したいのですが、お力を貸してください。どうぞよろしくお願いします。

  • 代数学の問題

    f:G→G'を準同型とする。 (1)Imf⊆G'を示せ (2)KerfがGの正規部分群になることを示せ (3)このfに対する準同型定理を説明せよ(説明不要) という問題なのですがどうしてもわかりません。 解答もなく困っています。 どなたか教えていただけないでしょうか? よろしくお願いいたします。

  • 代数学の問題です

    G:群 |G|=45に対し、G=S3×S5となることを示せ。 S3:シロ―3部分郡 S5:シロ―5部分郡 シローの定理が必要だとおもうのですが。。。 <シローの定理> (1)p^r | |G| ==> Gは位数p^rの部分群をもつ よってシローp-部分群は存在する (2)H: Gのp-部分群とすれば Hを含むシローp-部分群が存在する (3)シローp-部分群は互いにG共役 (4)シローp-部分群の個数は 1+k*p の形 (k∈Z,k≧0) よろしくお願いします。

  • 群論の問題です

    (1)G, G′ を群,H を G の正規部分群とする.f : G → G′ が準同型写像のとき f(H)は G′ の正規部分群か否か? 正規部分群ならば証明し,そうでないならば反例をあげよ. (2) n を正整数とするとき,Aut(Z/nZ) ≅ (Z/nZ)^x を示せ. この二問がわかりません。教えていただければ幸いです。

  • 大学の数学(代数)の問題です。

    問)群G1からG2への写像f:G1→G2は群準同型写像であるか。群準同型写像であるならばfの像Imf及び核Kerfを求め、群準同型写像でなければその理由を述べよ。(Snをn次対称群、Zは整数全体のなす集合あるいは加法群) (1)G1=S5、G2=Z;f(σ)=l(σ)(σ∈S5)。ここに、l(σ)はσを互いに素な巡回置換の積で表した時に現れる、長さの最も大きい巡回置換の長さ。 (2)G1=Z/9Z、G2=Z/3Z;f(x+9Z)=2x+3Z(x∈Z) です。誰かわかる方解答よろしくお願いします。

  • 代数学ー群ー写像

    群G,G'に対し、写像 φ:G×G'→G   (x,y)→x を考える。次の問いに答えよ。 (1)φは群準同型写像であることを示せ (2)Kerφは何か (3)群同型写像G'→Kerφを作れ (4)G'とKerφを同一視することによってG'がG×G'の正規部分群とみなせる G×G'/G'がGと同型を示せ 教科書を何度読んでも(2)から、わかりませんでした。解答も略解なので、試験のときどういう解答を書けばよいか解答例を教えてください。

  • 次の代数学の真偽について教えて下さい(理由も)

    1.有限個の元からなる巡回群の位数は素数である。 2.同じ素数を位数とする有限群GとG'は同型である。 3.Snの偶置換全体からなる部分集合はSnの部分群である。 4.Snの奇置換全体からなる部分集合はSnの部分群である。 5.群Gの指数2の部分群は正規部分群である。 6.群の準同型写像f:G→G'の像Im(f)はG'の正規部分群だ。 7.群の準同型写像f:G→G'の核Ker(f)はGの正規部分群だ。

  • Sylowの定理と位数14の群

    G:位数14の群 N:Gの7-Sylow部分群 H:Gの2-Sylow部分群 とし,写像f:H→Aut(N)を f(h)=(n↦hnh^-1) で定める. このとき, (1)Imf={e}⇒Gは巡回群 (2)fが単射⇒Gは二面体群と同型 であることを示せという問題なのですが,以下のように示しました. (∵) Sylowの定理より,Gの7-Sylow部分群の個数は1なので,NはGの正規部分群である.またN,Hの位数はそれぞれ7,2なのでともに巡回群となる.よってN,Hの生成元をそれぞれa,bとすると,a^7=e,b^2=e.一方,N∩Hの位数は2と7の公約数であることから1.ゆえにN∩H={e}.したがって G=NH={a^i b^j | a^7=e,b^2=e} (Gの任意の元はN,Hの元で一意に表せる) また,NはGの正規部分群であることから,ある整数mが存在して,bab^(-1)=a^mとなる.ここで, (a^m)^m=(bab^(-1))^m=b(a^m)b^(-1)=(b^2)a(b^(-2))=a すなわち,a^(m^2-1)=eとなるので,m^2-1は7で割り切れる.ゆえにある整数lが存在して, m^2-1=(m+1)(m-1)=7l と書けるので,m=7l±1. (1) m=7l+1のとき bab^(-1)=a^m=a^(7l+1)=a ∴ab=ba よってGはN,Hで直積分解でき, G≒N×H≒Z/14Z (≒は同型の意) ゆえにGは巡回群. (2) m=7l-1のとき bab^(-1)=a^m=a^(7l-1)=a^(-1) よってGは二面体群と同型. (証明終) こんな感じで(1),(2)を一気に示したのですが,(1),(2)の仮定を一切使っておりません.(1)については別個に仮定を使って示せましたが,(2)はどこで仮定を使ってよいかわかりませんでした. ご教示願います.