• ベストアンサー

特殊相対性理論における光の到達時間

pyon1956の回答

  • pyon1956
  • ベストアンサー率35% (484/1350)
回答No.6

もう一度よく考えていただきたいのですが、比較しているものが違うので矛盾していませんよ。 現在の地球から1億光年離れた天体から1億年前に出た光は現在地球に到達していますが、1億年前にはその天体と地球の距離は1億光年ではありません。 同様に今居億光年離れている天体から出た光は1億年後に現在の地球のある地点に到達しますが、そのとき地球ははるかかなたにあるはずです。仮にこの天体と地球が相対速度半光速で1億年前から遠ざかっていて、1億年後もそうだとしましょう。 そうすると今地球に届いている光は1億年前に出た光で、このときの地球と天体間の距離は5千万光年。 また現在この天体が発した光が現在地球のある地点に届くのは1億年後でそのとき地球はそこから5千万光年離れています。では地球に到達するのは?簡単な無限等比級数の和で、さらに5千万年後ですね。そのとき地球は現在の位置から5千万光年のかなたにあります。つまり光は1億5千万光年の距離を1億5千万年かかってすすむ。問題ないはずです。

N64
質問者

お礼

ご丁寧なご返事をありがとうございました。 確かに、ご指摘のとおり、比較しているものがちがうのかもしれません。私としては、極力比較しているものが、違わないように注意したつもりでしたが、だめでしたか。ほんとうに、ありがとうございました。

関連するQ&A

  • ある天体までの距離

    地球からある天体までの距離を光年で表すことがありますが、この○○光年というのは (a) 光が天体を出発したときの、天体と地球の距離 ( これを X とします。) をさす それとも、 (b) 光が天体を出発してから地球に届くまでに要した時間 ( これを T とします。) をさす あるいは (c) それ以外 のどれなのでしょうか? 宇宙は膨張していますので、光速度を c とすると X < c・T になると思うのです。 比較的近い天体では X ≒ c・T と見なすことができると思いますが、100億光年とか言われる天体では、X と c・T には大きな差ができると思うのです。 「 100億光年の天体」と言った場合、やはり、 距離 X = 光速度 x 100億年 という意味でしょうか? ( この場合 T は 120億年とか?)

  • 最古の光

    最古の光 ウィキペディアの宇宙、宇宙の大きさの項を見ると、 「現在観測できる最古の光は、現在地球のある場所から4200万光年離れた場所から、137億年かかって到達した。当時その場所は光速の60倍の速さで遠ざかっていた」とあります。この4200万光年と光速の60倍はどのようにして算出されるのでしょうか。 分かっている(前提にできる)のは、137億年の経過時間、温度が3000k度から2.7k度に下がった、当時の地球の位置から38万光年先が光速で遠ざかっていた、などと思いますが、教えてください。

  • 相対性理論と人間の寿命(時間)

    相対性理論と人間の寿命(時間) 地球上の人間が1名(Aさん)、地球と全く並行して動くロケットに人間が1名(Bさん)、 地球(およびロケット)とは亜光速で離れていく天体に人間(普通の地球人)が1名(Cさん) がいると仮定します。 AさんとBさんは相対速度がゼロなので「互いに静止」しておりそれぞれの時計(時間)の進み方は 同じだと思います。そうすると老化のスピードも同じ(遺伝的、性別的、環境的差異は考えず、また特別な病気や事故死もなかったと仮定します)なのでAさんもBさんも多分85歳から100才くらいで亡くなります。つまり「常識的な寿命であった」ことになります。 ところが地球とは亜光速で離れていく天体にいるCさんから地球とロケットを観察すると、逆に地球とロケットが亜光速でその天体から離れていくことになりますので、Cさんから見ると地球とロケットにいるAさんとBさんの時計(時間)の進み方は極端に遅くなり85才から100才どころではなく 「不老不死」に近づきます。 またCさんの天体とは別にAさんBさんを観察する別の相対速度をもつ天体があればその天体ごとにAさんBさんの寿命は異なることになります。 そうすると「我々の寿命とは何だろう?無数の寿命が重なり合っているのだろうか?あるいはどれが正しいのだろうか? 更にたとえば我々がAさんであるとして、地球を離れられないとしても地球上にあってもうまくCさん からの視点を獲得する技術的方法があれば非常な長寿を手に入れられるのではないか?」 このような妙なこと?ことを思いつきましたが、これは相対性理論を理解出来ていないからだと思いますのでそのあたりをご教示いただけたら大変有難いです。

  • ドップラー効果、特殊相対性理論の端緒となった話。

    木星の周囲をまわる衛星イオを地球からみると、木星に隠されて見えなくなる現象である「食」が周期的に起きている。 観測される食の周期は一定ではなく定期的に長くなったり短くなったりしている。 17世紀末、れーマーは光が一定の速さで宇宙空間を伝わってくるものとして食の周期の変動を惑星の公転と関係付けて説明し、光の速さの値を初めて見積もった。かつて光は宇宙に充満しているエーテルという媒質によって伝わると考えられていた。ここでは光は静止したエーテルに対して一定の速さcで伝わるとしよう。話を一般的にするために、木星に置かれた正確な時計を地球で観測して地球の正確な時間と同時に読み取っていると考える。木星の時計の読みは木星と地球の間の空間の光によって運ばれてくる。これら2つの時計の読みはこれにかかる時間だけずれることになる。まず、簡単のため木星はエーテルとともに静止しているとしよう。図1には木星を出て地球に到達した2つの光が示されている。初めの光の出発時刻はt'_1 ,到着時刻はt_1であり、あとの光の出発時刻はt'_1+T' ,到着時刻はt_1+Tである。時刻t_1とt_1+Tの間に地球が動いて木星との距離がd_1からd_1+Dに変化したとする。光の速さはcであるからd_1=c(t_1-t'_1)などが成り立つ。地球の時計の経過時間Tと木星の時計の経過時間T'の比をc,D,TであらわすとT/T'=((1))となる。その導出の根拠は次の通りである。((2)) ここでイオの実際の食の周期をP'とすると、地球が木星から遠ざかる速さがVであるとき食の周期は地上ではP=((3))と観測されることになる。このことは光の振動の周期にも適用できるから、同じ状況のもとで木星にある原子から出た振動数f'の光を地球でとらえると振動数はf=((4))となる。地球に対する光の速さも変わる。一方,観測される光の波長はV=0の場合の((5))倍になる。 解答 (1)T/T'=cT/(cT-D),(2)d_1=c(t_1-t'_1),d_1+D=c(t_1-t'_1)+c(T-T) よってT'=(cT-D)/c ∴T/T'=cT/(cT-D) (3)T→P,T'→P'とみなして,D=VPだからP/P'=cP/(cP-VP) ∴P=cP'/(c-V) (4)1/f=c/(c-V)・f' ∴f=(c-V)f'/c (5)木星での波長をλ',地球での波長をλとする。木星での光の速さはcで、地球に対する光の速さはc-Vである。 また、V=0の場合は木星での波長と同じである。 λ=(c-V)/f=(c-V)・c/(c-V)f'=c/f'=λ' ∴1倍 このように解説では説明されています。ここで質問が3つあります。 まず、(3)について、なぜT→P,T'→P'とみなすことができるのでしょうか? また、D=VPとしていますがDは地球と木星が離れた距離、そしてVが地球が木星から遠ざかる速さ、そしてPはイオの周期ですよね。 なぜD=VPといえるのかを教えていただきたいです。 そして、(6)についてですが、地球に対する光の速さc-Vとありますが、光速不変の原理、どのような慣性系においても光の速さは常に一定である。ということですから地球が例えどれだけの速度で木星から離れていようが、光には全く関係ない話ではないですか? 例えば、光と車が同じ方向に、そして車は時速100kmで進んでいたとすると、その車の中から光を見ても地上に立っている人から見ても光の速さは一定にみえるということですよね。 ならば、今回のλ=(c-V)/fという式はなぜ成立するのでしょうか。 これらのことがわからず困っています。 もしわかる方がいらっしゃいましたら教えていただけると助かります。 よろしくお願い致します。

  • 宇宙の果ては本当に観測できないのか

    宇宙は膨張しています。 で、観測点(地球)から離れるほど、遠ざかるスピードが早くなり、やがてそれが光速に達すると、そこから先は理論的に観測できない領域となる・・・と教わりました。 しかし、これは変ではないでしょうか? 光速度は一定ですよね? 光速度以上で地球より遠ざかっている場所があったとしても、そこから地球に向かって飛んでくる光は光速なので、やがて地球に到達する(すなわち観測できる)のではないでしょうか? 宇宙の果てが150億光年先にあるとして、その150億光年より向こう側にある天体も、150億年後にはその光が地球まで来るわけです。なので観測できるのではないですか?

  • 太陽からの光の到達時間について

    太陽から地球までの光の到達時間について、質問があります。 <質問1> 太陽から地球までの光の到達時間は8分19秒?ということらしいのですが、 これは、 (1)実際に測定されたものなのでしょうか? (2)「太陽から地球までの距離」と「光の速度」から算出されたもの(実際に測定されたものではなく、8分19秒?になるだろう、8分19秒?になるに違いない、と推定されるもの)なのでしょうか? <質問2> 質問1で(1)の場合、 測定方法は、どのような方法なのでしょうか? <質問3> また、質問1で(1)の場合、 地球が太陽の回りを公転しているなかの色んな位置(地球の色んな季節のときの位置)で測定されて、色んな位置の全てで8分19秒?だったということでしょうか? 知っている方が居られたら、教えていただけると、ありがたいです。 よろしくお願いします。 。

  • 相対性理論について

    宇宙空間で、母船から見て1.3光年先にある惑星から、宇宙船が母船に戻ろうとしています。さて、宇宙船には1年後に爆発する時限爆弾が仕掛けられていたことが判明しました。時限爆弾は母船でしか解除できません。宇宙船は光速の80%で飛べますが、1.3光年は光でさえ1年では到達できない距離です。宇宙船は到着できず爆発してしまうのでしょうか、それとも無事母船に到着出来るでしょうか。 答えは、「爆発前に無事到着出来る」です。 これは、相対性理論によると空間が縮むから無事母船に到着出来る。 ということらしいのですが、よく分かりません。 僕は中学生なので分かりやすく教えてもらえると有り難いです。 どうか、誰か教えて下さい。

  • 相対性理論について

    物理学や天文学については全くの素人ですが、今、ちょっと研究しています。 そのなかで、相対性理論については、まだわかったようなわかっていないような感じです。 そこでお尋ねしたいのですが、次のような話は正しいかどうかということです。 地球から我々の銀河の中心まで往復のロケット旅行をするとします。地球をでて、銀河の中心との中間点までずっと加速を続け、そこでロケットの向きを変え、今度は減速を続けます。銀河の中心へ着いたら同じ方法で地球へ帰ってきます。銀河の中心は地球から3万光年離れているとします。 ロケットは充分に速くできるとすると、いずれ光速度に近い速度まで上げられます。しかし、地球から見ると、ロケットはいつまでも光速度に達することができませんから、ロケットが帰ってくるまで、6万年以上はかかります。 しかし、ロケットに乗っているいる人からすれば、加速を続けた分だけスピードは上がり、約40年(何年でもいいですが、仮に)で往復できたとします。するとロケットに乗っていた人は40歳だけ年をとって帰ってきます。しかし帰ってきた地球は、6万年以上経っています。それがいわゆる「ウラシマ効果」です。 まず、この話は論理的に正しいのか、もし正しいとすると、地球から見ればロケットに乗っている人は、光が6万年かかるところを40年で行ってくるわけですから、「どこかで光速度を超えた」ということにならないのか、その場合、その6万年というのは、あくまで地球を基準にした時間だから、40年と比べることに意味がないのか、そのあたりのことが、よくわからないのです。 よろしくお願いします。

  • 相対性理論は間違っているのではないか?(3)

    同じタイトル(1)、(2)が削除されてしまいました。議論とならないよう注意されました。今まで回答してくださった皆さん大変申し訳ありませんでした。 改めて質問させていただきます。 《質問》:私は相対性理論が間違っているのではないかと考えています。以下がその理由ですが、もし間違いがあればご指摘ください。 ◎議論とならないようにするため、一回で完結する形でご回答願います。議論はできません。できるだけ簡潔明瞭に。 光速ロケットが秒速30万kmで飛んでいて、そのロケット内で進行方向とは垂直の方向に光を発射。光速ロケットの最初の地点をO、光速ロケット内の垂直に発射する光の発射位置をA、その終端をBとします。その数秒後について、アインシュタインは、ロケットの外の観測者からはその光が斜め上に上がる軌跡として見え(OB)、光の移動距離がロケット内部での観測距離ABより長くなるので、それに基づいてロケットの内外では時間の長さが変わると結論しました。 ・・・・・・・・・・・・・B ・・・・・・・・・・・/| ・・・・・・・・・/・・| ・・・・・・・/・・・・|↑垂直方向に発射した光 ・・・・・/・・・・・・| ・・・/・・・・・・・・|  O ̄ ̄ ̄ ̄ ̄ ̄A →光速ロケットの進行方向 重要なのは、光速度不変の原理、つまりマクスウェルの方程式のC(30万km/s)をどこに当てはめるべきか(注意!:外部観測者にとって)ということです。アインシュタインはOBに、しかし私はABに当てはめるべきであると考えています。OBか?それともABか? そこが焦点です。 注意!:ABはOA方向に移動している(一箇所に固定されていない)線分です。上の図は発射して数秒後の図であり、一番最初は点Oの位置にありました。さらに数秒後にはもっと右に移動していきます。しかし、いずれにしても、三角形OABは相似しています。具体的な数値としては、(相対論以前の考えで)図が1秒後の状態なら、AB=30万km、OA=30万km、OB=42万km。 ABに当てはめるべき(私の見解の)根拠を以下に挙げます。 (1)単純に、OBは光と光速ロケットとの合成(加算された)速度・距離です。実際の光の速度・移動距離と異なっていて当然です。 (2)ABはどの観測者からも全く同じ値として測定されます。それに30万km/sを当てはめると、どの観測者からも光の速度は30万km/sとなり、マクスウェルの方程式に基づく光速度不変の原理が、時間や空間の長さに変更を加えずとも成り立ちます。 マクスウェルの方程式のc(30万km/s)は「光(自身)の速度」のはず。光にスピードメーターをつけた場合、30万km/sを示すでしょう。これが、マクスウェルの方程式のc、つまり光の速度とされるべきです。ですから、それを(加算された)相対速度、合成速度(つまりOB)に当てはめるべきではありません。 ですから、OBは光の「見た目の運動・合成運動」、しかし、ABが「光の実際の運動・光の独力の運動」という区別を設けることができます。 その定義について。「光の実際の運動(速度)」とは、「光が進行中の慣性系に基づいて計測される運動(速度)、それには外的な力が加わってはならない。それは光が独力で成し遂げる運動(速度)」となります。 「光が進行中の慣性系」とは上の図の場合、光速ロケット内部の慣性系。「外的な力」とは、光速ロケットのOA方向への運動のこと。 結局、相対性理論の間違いは、(外部観測者にとっての)光の「実際の」速度(30万km/s)を観測者観点(見た目の合成速度)でしか考えられなかったことです。実際にはそんなことはありません。例えば、火星の運動は地球上の観測者から見た観点(見た目の運動。つまり地球との相対速度)でしか判断できませんか? 火星の公転速度(実際の運動)は時速86688kmであり、これはどの観測者の観点からも全く同じ値として確認できます。光についても全く同じです。光と光速ロケットとの合成速度に光速度cを当てはめようとするのは間違いです。どの観測者からも同じ値として測定されるABこそが光速度cであるべきです。 <ありそうな反論> 尚、確かに外部観測者観点からは、光がOB上を42万km/sで進んでいるように「見えます」。しかし、光も光速ロケットも光速以上の運動をしているわけではありません。実際、それは両者にスピードメーターを取り付ければ分かります。ですから、物質的なものが光速以上の運動はできないとする考えと矛盾しているわけではありません。 しかし、「実際に光は42万km先に進んだではないか」との反論もあるかと。しかし、それは、光が単独で成し遂げた成果ではありません。それは飽くまで光の運動に光速ロケットの運動が合成された結果生じたものです。「「単独(独力)で」光速以上の運動を行なうものはない」と定義するなら矛盾はありません。 ◎議論とならないようにするため、一回で完結する形でご回答願います。議論はできません。できるだけ簡潔明瞭に。

  • 特殊相対性理論についてあまり知らないのですけど

    「特殊相対性理論で質量のある物体の速度は光の速度に近づくと物体の時間の進み方は遅くなり、光速に達すると時間は止まる。光速で動く物体が時間が止まった状態だとすると、それより速いニュートリノは時間をさかのぼれる」って、つまりはただ単に「ニュートリノの速度に達すると時間は止まる」っていう定義に変わる(ずれる)だけじゃないのですか?