• 締切済み

集合と命題

shkwtaの回答

  • shkwta
  • ベストアンサー率52% (966/1825)
回答No.4

No.2補足への回答です。 > ¬(P→¬Q)⇔P→Q これはまちがいです。正しくは ¬(P→¬Q)⇔P∧Q です。 証明は ¬(P→¬Q) ⇔¬((¬P)∨(¬Q)) ⇔P∧Q > (P∧(¬Q)とは、なんですか?(どのようなじょうたいですか?) ∧記号は、「かつ」(and)を示します。∧の両側の命題がともに成立していることを示します。 (P∧(¬Q))とは、Pが真であり、かつQが偽であることを示します。 >なぜ同値にならないのですか? 証明に書きましたが、¬(P→¬Q) や (P→(¬Q))→O は P∧Q と同値です。 (P∧Q)と(P→Q)は同値ではありません。(P∧Q)は、PとQの両方が真であることを主張します。一方、(P→Q)はPとQが真であるとか偽であるとかは主張していません。ただ、Pが真であるときはかならずQが真になると主張しているだけです。Pが偽のときは、Qは真でも偽でもかまいません。 >なぜ→が∧や∨にかわるんですか? (P→Q)は、Pが真であるときはかならずQが真になると主張しますので、 Pが真でQが真 Pが偽でQが真 Pが偽でQが偽 の3つの場合を含みます。「Pが真でQが偽」だけがあり得ません。 一方、(¬P)∨Q について調べます。これは、Pが偽であるか、またはQが真であると主張します。したがって、 Pが真でQが真 Pが偽でQが真 Pが偽でQが偽 の3つの場合を含みます。「Pが真でQが偽」だけがあり得ません。 このように、(P→Q)と (¬P)∨Q は同じであり、つまり同値です。よって、(P→Q)は(¬P)∨Qに置き換えられます。No.2の証明ではこれを使っています。 No.3補足への回答です。 >なぜ、Pが偽であってはならないんですか? (P∧Q)は、 Pが真でQが真 の場合だけを含みます。 (P→Q)は、 Pが真でQが真 Pが偽でQが真 Pが偽でQが偽 の3つの場合を含みます。したがって、(P∧Q)は(P→Q)に含まれますが、(P∧Q)では、(P→Q)とちがって、Pが偽であってはならないのです。

benefactor_geniu
質問者

お礼

返信ありがとうございました。 まだ、詳しくよんでいないんですが、 こんなに長くにわたってありがとうございました。 本当に恐縮です。

関連するQ&A

  • 集合の証明

    P∪(Q∩R)=(P∪Q)∩R P⊂Rが成り立つとし、また集合Qは任意の集合とする。 この時この上記の等号関係を証明しなさい。 という問題なんですけど、教えていただけないでしょうか?

  • Q.無理数全体の集合Pについて|P|>?0を証明せよ。

    Q.無理数全体の集合Pについて|P|>?0を証明せよ。 レポートを提出したのですが、上記の問いのみ、(1)(下記)を中心に説明不十分とコメントされていました。 レポートは合格したので再提出はないのですが、解答はもらえないため、気になります。 どなたか、修正および補足などをお願いします。 A. Nを自然数全体の集合、Zを整数全体の集合、Qを有理数全体の集合、Rを実数全体の集合とする。 |P|≠アレフゼロを背理法で証明する。 |P|=アレフゼロと仮定すると、アレフゼロからPへの全単射が存在する。 アレフゼロ=|N|だから、NからPへの全単射がある。 A={-n|n∈N}とすると、|A|=|N|=|Q|だから、 A→Qの全単射がある。 Z-{0}=A∪N (A∩N=(空集合)) R=P∪Q (P∩Q=(空集合))だから、|N|=|P|、|A|=|Q|だから、 |Z-{0}|=|R| になる。 |N|=|Z-{0}|であるから、アレフゼロ=|N|=|Z-{0}|=|R|となり、矛盾である。 よって、|P|≠アレフゼロとなる。 また、Pは有限集合であるから|P|<アレフゼロではない。 以上により、|P|>アレフゼロとなる。

  • 集合族に関する「証明」 

    集合Xの2つの部分集合族{Aλ:λ∈P},{Bμ:μ∈Q}について (∩{Aλ:λ∈P})×(∩{Bμ:μ∈Q}) =∩{Aλ×Bμ:<λ,μ>∈P×Q} の証明が分かりません。 (∩{Aλ:λ∈P})×(∩{Bμ:μ∈Q}) ⇔ {(XA,XB);(XA∈∩{Aλ:λ∈P})∧(XB∈∩{Bμ:μ∈Q})} ここから出発しようと思ったのですが 先に進みませんでした。 他の例があるのでしょうか。  解答例がないので困っております。

  • 背理法と命題の否定について

    背理法と命題の否定について 例えばp⇒qを背理法を用いて証明するとき、p⇒qの否定を仮定すると、すなわち、pであってqでないものが存在すると仮定すると矛盾が生じるから、(否定が偽ならもとの命題は真であるから、)p⇒qである。ということなんですよね? では、「nが自然数のとき、n(n+2)が8の倍数ならばnは偶数である」を背理法を用いて証明するとき、冒頭の文は、「nが自然数、n(n+2)が8の倍数であり、奇数であるnが存在すると仮定する。」というのでいいんですよね? 普通参考書などではもっと簡潔に「nが奇数であると仮定する。」などと書いてあるのは、わざわざ長々と書かなくてもわかるからということなのでしょうか? しかしこの書き方だと、「全てのnが奇数であると仮定する」と言っているようにも取れるように思うのですが… p⇒qの否定は決して「p⇒qの余事象」ではないですよね? 自分の解釈に自信がもてなくて… 間違っているところがありましたら、ご指摘お願いします。

  • 倫理と集合についての問題がわかりません

    個体領域をX,P(x),Q(x)をx∈Xに対する条件,Ap,AqをそれぞれP,Qの心理集合とするとき Ap∩Aq={x∈X;P(x)∧Q(x)}, Apの補集合={x∈X;¬P(x)} であることを示せという問題なんですがどう証明すればいいかわかりません よろしければ証明の仕方を教えてください

  • 無理数全体のつくる集合

    集合(入門レベル)を勉強し始めたばかりで、 「無理数全体の集合Pについて、Pの濃度は可算濃度より大きい。」 ことの証明について悩んでいます。 証明の仕方としては、 (1)|P|=|PUQ|(Qは有理数全体の集合とする。)を証明して、 (2)R=PUQ(実数の集合をRとする。)より、  |P|=|R|=c(cは連続体濃度)が成り立ち、 (3)c>可算濃度より、  |P|>可算濃度           (証明終わり) これでいいのでしょうか。 もっと適当な証明があれば教えてください。  

  • 数学A、命題と論証の質問

    次の命題p、qについてp⇒qの真偽を 集合を用いて答えよ。 p:自然数nは8の倍数である。 q:自然数nは4の倍数である。 これについて解答には 8の倍数である自然数の集合をP、 4の倍数である自然数の集合をQとすると P⊂Q(PはQの部分集合である)なので p⇒qは真である。 と書かれているのですが pとPは何がどう違うのか、qとQは何がどう違うのか また、P⊂Qならば何故p⇒qが真なのかが もうひとつよくわかりません。 具体例等を示して説明していただけるとありがたいです。 よろしくお願いします。

  • 背理法について

    背理法についてよくわからにので教えてください 証明の説明文に "p→q"や"qである”が真であるこをいうためには、まず ̄q (qではない)と仮定して矛盾を示すと書いてありますが、これはどんな意味なんでしょうか? 何回も呼んだのですがよくわかりません。 お願いします

  • 空集合の扱い方について

    とっても読みにくい文章になってしまいましたが、回答お願いします。記述の仕方のささいな誤りは見逃してください… 「P(x)を満たす任意のx∈R(実数)がQ(x)を満たす。」という命題(命題1)について、 P(x)を満たすxが存在しないとき(つまり、{x∈R|P(x)}=Φのとき)、この命題は真だと説明されました。 理由としては、 「この命題が偽ならば、P(x)を満たすがQ(x)を満たさないxが反例として存在するはずだが、P(x)を満たすようなxはそもそも存在しない。よって真である。」 ということらしいのです。 そこで、Q(x)の否定をR(x)として、「P(x)を満たす任意のxがR(x)を満たす。」(命題2)の真を同様に証明することもできるのでしょうか? もしできるのなら続けて質問があります。 P(x)を満たすxの集合をS、Q(x)を満たすxの集合をTとすると、命題1が成り立つとき、SはTに含まれています。Sが空集合の場合を考えると、空集合は任意の集合の部分集合である、といえます。(これは授業でやりました) しかし命題2が成り立つならば、SはTに含まれていません。空集合はどの集合にも含まれない、ということになりますよね。 空集合は任意の集合の部分集合であると同時に、どの集合にも含まれないという理解で良いのでしょうか? また、Q(x)=(x≦u)とすると、「SはTの部分集合である⇔uはSの上界である」となり、命題1をこれまでと同様に命題1をあてはめると、任意の実数uは空集合Φの上界である。となり、命題2をあてはめると任意の実数uは空集合Φの下界である。ということになりますが、これも上と同様の、任意の実数uは空集合Φの上界であり、下界である、というふうに理解したのでよいですか?

  • 命題についての質問

    https://www.hmathmaster.com/math1/%E5%AF%BE%E5%81%B6%E3%81%AE%E8%A8%BC%E6%98%8E%E3%81%AB%E3%81%A4%E3%81%84%E3%81%A6/ このウェブサイトの集合の包含関係を用いない証明にある "p⇒q"が成り立つとき、その対偶¬q⇒¬pが成り立たないとすると ¬p∨pは常に成り立つので、¬q⇒pが成り立たなければなりません" の中の "¬p∨pは常に成り立つので、" が何故なのかがわかりません 記号と用語の意味は理解しています