• 締切済み
  • 暇なときにでも

波動方程式の解法

偏微分方程式の本にはラプラス方程式の解法として  変数分離法  Green関数法  変分法  アプリオリ評価法  境界上の積分方程式に帰着する方法  ペロンの方法  複素関数的方法 の七つが挙げられていました。これをダランベールの波動方程式  (∂^2/∂t^2 - ∇^2)φ=0 にあてはめて考えると、変数分離法、Green関数法、変分法は共通して使えます。双曲型方程式には特性曲線による方法があります。ファインマンの経路積分法もあると思います。双曲型方程式の場合、アプリオリ評価法、境界上の積分方程式に帰着する方法、ペロンの方法に相当するようなものはないのでしょうか。また、複素関数的方法は解析関数の実部と虚部が調和関数になることを使うため、波動方程式に使うことは難しいと思いますが、全く不可能でしょうか。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1

残念ですが、私には、とても回答できる能力を持ち合わせていません。 それで、私の方が別にお聞きしたいのですが、(暇で差し支えないときにお答え頂ければと思います。) 波動方程式の解法を系統立てることは、波動力学 or 他の物理理論などの貢献に関係がありそうでしょうか? もし、あると思われるなら、具体的にどのようなことが考えられるのでしょうか? 例えば、波動の重要な性質(反射、屈折、回折、ドップラーeffectなど)を系統立てて整理することなどにもつながってくる可能性はあるでしょうか?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答ありがとうございます。よく知られているように波動方程式の解は不変デルタ関数で表わされます。これが場の理論の摂動的方法の基礎です。これと異なる方法を考えることは非摂動的解法の基礎になるかもしれません。

関連するQ&A

  • 波動方程式の解のうち2次式が省かれるのはなぜ?

    波動方程式の解のうち2次式が省かれるのはなぜでしょう。 変数分離法で解けるのはわかるのです。けれど、 時間tと位置xの波動方程式 ∂^2 f /∂ t^2 = - a ∂^2 f /∂x^2 だとして、 f(x,t)=x^2 - a t^2 のような解も成り立つはずですが、これに触れている教科書等を 見たことがありません。三角関数の和の話ばかりです。 なぜでしょう? 「波動」にならないから、といった、答えの対象を波動に限定しているからでしょうか? しかし、数学の問題だとすると、 境界条件さえ満たせばこれも解だと思うのです。 何か単純な勘違いをしているのでしょうか?

  • 波動方程式のグリーン関数とフーリエ変換について。

    波動方程式のグリーン関数とフーリエ変換について。 非同次波動方程式のグリーン関数を求める過程で次のようなFourier積分, [∞,-∞]dω e^(-iωt)/(ω^2-(ck)^2) を求めるのですが特異点ω=±ckの対処の仕方について疑問があります。 1.そもそもこの積分は定義されるのか。いわゆる主値積分と考えていいのか。 2.参考書には特異点まわりに半径rの小半円をとってr→0の極限をとる方法と、  特異点に微小量iεを加えて特異点をずらす方法がのっています。これらは同じことを  意味するのでしょうか。 3.経路をずらすやり方だと4種類考えられると思うのですがすべて同じ結果になりました。いずれも  小半円の寄与が残ってしまい、特異点をずらす方法の答え(こちらのほうは因果律を見たす解が得ら  れました)と一致しません。これは何を意味するのでしょうか。 長々と質問しましたが、よろしくお願いします。

  • 波動方程式の解について

    電磁気学についての質問ですが、 平面はのTEモードの波動方程式 δ^2 Hz/δx^2 - δ^2 Hz/δy^2 + k^2 Hz = 0 (_は下つき文字 ^は上付き文字) の解が  Hz = H_0 exp(-jk sinθx + jk cosθy) となっているのですが、途中の導出方法がわかりません。 Webで調べると変数分離を使うところまではわかりましたが、これだと、三角関数の形で答えが出てきますが、 どうして、指数関数の形で解がでるのかを教えてください。

  • 有限要素法の手順とその原理に関する初歩的な質問

    有限要素法という数値計算の方法は、まず方程式(A=B)があって、それをA-B=0とし、任意の重み関数ωを乗じて方程式の成立する範囲で積分(∫ω(A-B)dA=0)し、さらにそれを部分積分し、面積分(領域全体の)と線積分(境界上の)とします(弱形式)。そして、領域全体を細かく分割した有限要素内部での未知変数(重み関数も)を内挿関数とそれらの節点値(三角形だったら基本3個とか)を使って内挿して表現し、求めた式に代入してωiでくくって代数方程式を作り、それを全体マトリックスとして組み上げて行列計算を行う、というものだと思います(ガラーキン法: 汎関数と変分法を使うリッツ法と等価になる?)。式を使わず言葉で長々と書きましたが。そういう風に理解しています。(間違っているかもしれませんが)。この一連の流れの中でどうしても1つ腑に落ちないところがあります。それは部分積分のところです。この部分積分は必須なのでしょうか。部分積分をすることによって境界積分が生じるので境界条件を課するのにちょうどいいからということなのでしょうか。部分積分をしないと先に進めないというところがやや理解しずらいのですが。よろしくお願いします。

  • Dirac方程式について

    質問1. Dirac方程式を量子化する前の式 ε/c=α1p1+α2p2+α2p3+βmc は、古典力学の式として、何か利用価値は無いのでしょうか? α1、α2、α2、β:行列 質問2. また、この式を量子化せずに形を波動方程式にすることができるように思われるのですが、 そのようにしても、古典力学の式として何か、利用価値は無いのでしょうか? 質問3. この場合、4つの式になりますので、波動関数を掛けないと答えは、出ないのでしょうか?とすると、やはり量子化しないと意味は無いのでしょうか? 質問4. 一般に波動方程式を解く際、微分方程式の本を見ると、変数分離とか何やらで、 しんきくさい解き方をしていますが、例えばDirac方程式の平面波の計算では、 波動関数を掛けて、固有値・固有ベクトルを一気に計算して求めます。 古典力学的な波動方程式や熱伝導微分方程式で、Dirac方程式のように 波動関数に近いものを掛けて、固有値・固有ベクトルを求めている 例はあるのでしょうか? 質問5. 微分方程式の本に載っている古典力学の計算「例えば変数分離を使って波動方程式を解いた例」を、時間がかかり非効率的になるかもしれませんが、Dirac方程式の平面波の計算のように、波動関数(あるいはそれに近いもの)を掛けて、固有値・固有ベクトルを計算して求めることは可能でしょうか。

  • 波動方程式の一般解について

    波動方程式を学んでいて、 『波動方程式の一般解を ψ(x)=Ae^kx+Be^(-kx) として長さaの1次元の箱の中にある電子の波動関数を 1/2i・(e^ix-e^(-ix))=sinx を用いて求めよ』 という問題があって自分は違う方法で波動方程式の一般解は  ψ(x)=Csin(nπx/a) という結論に達したんですが、 ここで ψ(x)=Ae^kx+Be^(-kx) に  1/2i・(e^ix-e^(-ix))=sinx を適用すると ψ(x)=Csin(nπx/a) になるんでしょうか。もしもそうなのであれば示し方を教えてください。 ちなみにA,B、Cは何れも定数です。 よろしくお願いします。

  • 電磁界解析での境界要素法について

    こんにちは。ちょっとつまずいてしまったので質問があります。自分は今、無線電力伝送の効率(回路はRLC直列共振回路をコイルを向き合わせて並べたもの)を境界要素法で求めるプログラムを作っています。コイルに流れる電流を境界要素法で求めればできると思うのですが、境界要素法がなかなか難しく進みません。境界要素法のだいたいの流れは理解できました。自分が理解している範囲では 1.支配方程式にグリーン関数をかけて部分積分を繰り返し境界積分方程式にする。 2.離散化して連立方程式に直して解く です。質問は3つあります。 1.まず支配方程式と境界積分方程式がわかりません。この場合はどれを用いればいいのですか? 2.境界要素法は勉強しているのですが、3次元渦電流場とかラプラス問題などいろいろありどのタイプを勉強すればいいかわかりません。この場合はどれをつかうのですか? 3.離散化の仕方がわかりません。どうすればいいのでしょうか? 情けないですが境界要素法は思ったよりかなり難しいです。参考書をよんでいるのですが、ぜんぜん理解できません;支配方程式からプログラムの考え方を詳しく教えてください。よろしくお願いします。

  • 波動方程式の解き方

    以下の条件をみたす解 u(t,x)を求める問題についてです. 区間(0,L) ,t>0 で u_tt = a^2 u_xx (波動方程式) をみたして 初期条件 u(0,x) = 3cos(2πx/L) , u_t(0,x) = 2cos(πx/L) 境界条件 u_x(t,0) = u_x (t,L) = 0 をみたす解 u(t,x)を求める. (注: a^2 は aの2乗 ,u_tt は uのtについての2回偏微分 , u_t はuのtについての1回偏微分) 自分は変数分離の方法でコツコツやって(u(0,x) と u_t(0,x) がどちらか一方が0のときに解をもとめてそれぞれを重ね合わせの原理で足して答えをだしました) u(t,x) = (2L/aπ)cos(πx/L)sin(πat/L) + 3cos(2πx/L)cos(2aπt/L) という結果(たぶん正しいはずです)を得たのです.  しかし,この問題の ヒント として (ヒント: 周期2Lの偶関数に拡張するとよい. ちなみにcos(2πx/L),cos(πx/L)は2Lの周期をもっている) というヒントが書いてありました.  私にはこのヒントの意味がまったく理解できません. 偶関数に拡張って なにを拡張するのですか? 勝手に拡張していいものなのですか? 拡張することによってなにかいいことがあるんですか? ということを3日間ほど考えていたのですが,どうもわかりませんでした.  なにかわかる方がいましたら この偶関数に拡張する方法でu(t,x)を求める方法を教えていただきたいです. よろしくお願いします.

  • 相対論の変分

    相対論で変分原理を用いるのを良く見かけますが,疑問が生じたのでここで質問させてもらいます.よろしくお願いします. 疑問に思ったのは以下のpdfの記述です. http://members3.jcom.home.ne.jp/nososnd/grel/geod2.pdf 1ページ目に「変分を考えるときには積分内のルートは無視したほうが便利である」とありますが,ルートを無視してもよいのでしょうか?一般的に考えても,関数Fの積分の変分と関数√Fの積分の変分ではオイラー方程式が違ってくると思います.無視してもよいのはなぜでしょうか? 出てくるオイラー方程式に差異が生じてしまうと思うのですが... 困ってます,よろしくお願いします.

  • 一次元ポテンシャル障壁中のDirac方程式の波動関数

     明けまして、おめでとうございます。 本年もよろしくお願いします。 さて、早速ですが、下記につきまして教えてください。 Schrodinger方程式では、下記のようなポテンシャル障壁があると V=0, x<0 V=V0, x>0 各領域において方程式は、 -hbar^2/2m d^2φ1/dx^2= E φ1 -hbar^2/2m d^2φ2/dx^2 + V0φ2 = E φ2 となり、境界条件は φ1(x=0)= φ2(x=0) x=0において、 dφ1/dx= dφ2/dx となって、波動関数は、E<V0の領域で φ1= c1 Exp(iax)+c1((ia-b)/(b+ia))Exp(-iax) φ2= c1((2ia)/(b+ia))Exp(-bx) となると、ほとんどの教科書には、記載されておりますが、Dirac方程式については、 一次元ポテンシャル障壁中の波動関数がどのようになるのか?見たことがありません。 たぶん、Schrodinger方程式と同じようになると思われますが、導出方法をご教示 願います。