• ベストアンサー
  • 困ってます

置換積分(高校レベルだと思います)

∫(1/((1-x)√(x^2+x+1)))dxを√(x^2+x+1)=t-xと置換して求める。 t=x+(x^2+x+1)^(1/2)から dx/√(x^2+x+1)=2dt/(2t+1)を求め、元の式に入れてみました。 ∫(1/((1-x)√(x^2+x+1)))dx=∫(2/((1-x)(2t+1))dtとなります。 ここから、どう工夫すれば良いものなのでしょうか? アドバイスをいただければありがたいです。よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数108
  • ありがとう数4

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

このまま引き続きxをtで表して計算を続けてみてください.複雑そうに見えますが,この置換パターンは,xは2次式にはならず1次式で変形でき,また被積分関数の分母の一部は計算途中で消えてくれるので,安心?して計算できるはずです. t=x+√(1+x+x^2) → (t-x)^2=1+x+x^2 → x=-(1-t^2)/(1+2t) → 1-x=(2+2t+t^2)/(1+2t) と変形できるので, ∫(2/((1-x)(1+2t))dt=∫(2/(2+2t-t^2))dt となり,有理分数式に変形できます.以下, 右辺=∫(2/(3-(1-t)^2))dt =(1/√3)*∫(1/(√3+1-t)+1/(√3-1+t))dt =(1/√3)*(-log(√3+1-t)+log(√3-1+t)) + const. =(1/√3)*(-log(√3+1-x-√(1+x+x^2))+log(√3-1+x+√(1+x+x^2))) + const. となります.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

先にレスをいただいた方の指摘を参考にして ちょうど答えにたどり着いたところでした。 無事正解できたことを確認できました。 ありがとうございました。(^^)

関連するQ&A

  • 数3の置換積分を教えてください。

    t=√(x^2+4)など、√の中に2乗が含まれる式を置換したとき、 ルートを外すとt^2=x^2+4などとなりますが、これをdx ⇒dtに変えるとき 2x dx= 2t dtになる理由が分かりません。 このように変形できる理由を教えてください。 ちなみに、 二乗式が含まれない、t=√(4x+3)などが dx⇒dtに変えるときは、x=(t^2-3)/4から、合成関数の微分よりdx = {(t^2-3)/4}' dtとなり dx = t/2 dtになるのは分かります。

  • 置換積分法について

    たとえば, ∫(x+1)√(2x+3)dx を計算する場合, t=√(2x+3)とおき, t^2=2x+3 …(*) x=(t^2-3)/2 から, dx/dt=t ∴dx=tdt が導かれ, 置換積分を行うのが高校数学の教科書通りだと思うのですが, (*)からいきなり, 2tdt=2dx とやってよいのでしょうか? つまり, f(t)=g(x) の状態から,xがtの関数であることを利用して両辺tで微分して, f'(t)=g'(x)・dx/dt となり, f'(t)dt=g'(x)dx としてよいのでしょうか?

  • 置換積分法について

    今置換積分を一人寂しく学んでいる者です(´・ω・`) 聞きたいことはいろいろあります(;・∀・) ∫x/(x+2)^2dx があったとしたらx+2をtに置き換えますよね? そうしたらdxをdtに変換するじゃないですか? その変換の仕方がいまいちわかりません>< そもそもdxとはどういう意味かさえ危ないです>< 上の式を計算すると∫t-2/t^2dtになり ∫(1/t-2/t^2)dtになるそうです。 そしたら logltl+2/t+cになると書いてあるのですが、2/t^2を積分したら 6/t^3に自分が積分したらなってしまいました;; どうやったら2/tになるのでしょうか>< あとはtをXに変換して答えになるので問題ないです。

その他の回答 (1)

  • 回答No.1
  • tarame
  • ベストアンサー率33% (67/198)

>√(x^2+x+1)=t-xと置換して 両辺を2乗して式変形すると x=(t^2-1)/(2t+1) >∫(2/((1-x)(2t+1))dt に代入して =-∫(2/(t^2-2t-2))dt

共感・感謝の気持ちを伝えよう!

質問者からのお礼

早いレスありがとうございました。 ご指摘を受けたように計算を続けて 無事に答えにたどり着きました。(^^)

関連するQ&A

  • e^xの置換積分

    √e^x+1=t とおくと、e^x+1=t^2であるから。 e^x=t^2-1, e^xdx=2tdt 上記の計算がわかりません。 左辺がxなら、dx/dt=2tとなることは、わかりますが、 dxの前にe^xがついているのはなぜでしょうか? 両辺の自然対数をとって、x=log(t^2-1)としてもわかりません。 ご指導お願いします。

  • 置換積分の問題

    √x/(1+√x)を置換積分で解こうと思うのですが、 √x=tとおいて x=t^2 dx=2tdt 与式=∫t/(1+t)*2tdt=2∫t^2/(1+t)dt ここから先はどのように解けば良いのでしょうか?

  • 置換積分における置換演算について

    f(x)に対する積分式について、計算のため、 t^2 = x-5 とおく変数の置換式を立てました。 この時、両辺をtで微分すると、 2t = dx / dt → 2t・dt = dx という変換式ができます。 一方、両辺をxで微分すると、 dt^2 / dx = 1 → dt^2 = dx という変換式ができます。 ここで、dt^2 = t・dtとみなして t・dt = dx という変換式として使っては「いけない」明確な説明は、どのようなものになるでしょうか? (t^2という文字を更に別の文字に置換する必要がありますが、高校の数学教科書ではこのあたりが明確に示されていないようです。) (置換積分の変換式の説明の際、「dx→dt」の置換方法は、合成微分の絡みから、「あたかも分数の掛け算をするように」求められると解説されることがあるようですが、その説明ではこの部分の説明がうまくできません。) よろしくおねがいいたします。

  • 「高校数学」置換積分法の公式について

    x=g(t)のときの置換積分法の公式∫f(x)dx=∫f(g(t))g'(t)dt についてなんですが、 dx/dt=g'(t)だから dx=g'(t)dtよりこれを左辺のdxに代入して 機械的に右辺の式になると考えるのは間違いでしょうか? 教科書では y=(左辺)として dy/dt=(dy/dx)(dx/dt)=f(g(t))g'(t)だから両辺tで積分して 右辺を作ってましたが・・・

  • 置換積分法

    ∫x(3x-2)^3 dx を(t=3x-2)の置換により、この不定積分を求めます。 x=(1/3)t + (2/3)であるから dx/dt=1/3 それで、 ∫x(3x-2)^3 dx=∫(1/3)(t+2)t^3×(1/3)dt この式変形が分かりません・・・。 「∫f(x)dx=∫f(g(t))g'(t)dt [x=g(t)] の公式を使ってるのかなぁ・・・とも思いつつうえのようには出来ません。 ちなみにdx/dtっていうのはdxをdtで微分しますって意味でしたよね・・・? このdってのは「微分します」ってことでしょうか・・・? いつもあまり意味なく形式的に書いてしまっていたので・・・ おねがいします。

  • 不定積分の計算について

    不定積分の式で置換不定積分法で解いてますが、 下記は参考書にのっていたものです。 計算をみていくと、どうしてもわからない場所が出てきました。 計算式の最後から2番目より分かりません。教えてください宜しくお願いします。 ∫x(5x-2)^3 dx t=5x-2 とおくと dt=5dx すなわちdx=(1/5)dtとなる。 またx=(t+2)/5 = ∫(t+2)/5 ・t^3 ・ (1/5)dt =1/25 ∫(t^4 + 2t^3 )dt =1/25(1/5t^5 + 2・1/4t^4)+C =1/25(1/5 (5x-2)^5 + 1/2(5x-2)^4 ) + C =1/250 (5x-2)^4 {2{5x-2}+5) + C ← ここから分かりません =1/250(5x-2)^4 (10x+1) + C     ←

  • 積分がわかりません

    いくつかわからないので教えていただきたいです。∫は省略します。 まずlog(1+√x)dxですが、t=√xと置換してdx=2tdtとなり 2tlog(1+t)dtとなります。しかしここからのやり方がわかりません。 次にcos^3xsin^2xdxですが、部分積分を使ってやってみたのですがどうもうまくいきません・・・しかし部分積分を使うのは間違いなさそうなんです。 次に(1/(x^3-x))dxですが、この式は1/x(1-x)(1+x)に変形できます。 分母が2つの掛け算ならば部分分数にできるのですが3つの掛け算なのでどうしたらいいのかわかりません。 次に(x/(x^3+1))dxですが、この式をx/(x+1)(x^2-x+1)と変形したあとのやり方がわかりません。 最後に、これが一番聞きたいことなんですが (1/cosx)dxの積分です。 分子分母にcosxを掛けてcosx/cos^2xとします。 sinx=tとおくと、dx=dt/cosxとなり、最初の式はdt/(1-t^2)になります。 部分分数にして1/2∫(1/(1+t)+1/(1-t))dtになります。 よって1/2(log|1+t|-log|1-t|)=1/2log|(1+sinx)/(1-sinx)|になりますよね?? でも、解答にはlog|(1+sinx)/cosx|って書いてあるんです。 どこが間違ってるのかわかりません。 以上長いですが教えていただけたら幸いです。

  • 定積分の問題です。

    定積分の問題です。 []内に示した置換によって、次の定積分を求めよ。 ∫(0から1)x√(1-x)dx [√(1-x)=t] 次の様に解答したのですが、間違っていたらご指摘いただけたらありがたいです。 √(1-x)=tとおくと、1-x=t^2,x=1-t^2,dx=-2tdt ∫(0から1)x√(1-x)dx=∫(1から0)(1-t^2)×t×(-2t)dt =∫(1から0)(-2t^2+2t^4)dt=∫(0から1)(2t^2-2t^4)dt =[2/3t^3-2/5t^5](0から1)=2/3-2/5=4/15

  • 自分の置換積分の間違いを教えて下さい

    置換積分で遊んでいる内に、置換積分で積分した時と通常の方法で積分した時に答えが異なるケースがありました。 こんな事はありえないと思うので、自分の考えが間違っていると思うのですが、どこが間違っているのか分かりません。 済みませんが、皆さんのお知恵をお貸しください。 問題のケースはx^4です(置換積分する必要性は全くありませんが、思考実験として)。 ・通常の積分 ∫(x^4)dx=(1/5)*(x^5)+C ・置換積分の場合 t=x^2とする。 dt/dx=2x dx=(1/2x)dt ∫(x^4)dx =∫t^2*(1/2x)dt =(1/3)t^3*(1/2x)+C =(x^2)^3/6x+C =(1/6)*x^5+C 係数が、通常の積分の場合は1/5に、置換積分の場合は1/6になってしまいました。 どこが間違っているのでしょうか?

  • 積分の問題が分かりません。

    1/{x^2*√(x^2-1)}を積分する問題で、 t=x+√(x^2-1)とすると、 x=(t^2+1)/2t、 √(x^2-1)=(t^2-1)/2t、 dx=2(t^2+1)/4t^2となり、 ∫{2t/(t^2+1)}^2*2t/(t^2-1)*2(t^2+1)/4t^2dt= ∫4t/{(t^2+1)(t^2-1)}dt= ∫-2t/(t^2+1)+1/(t+1)+1/(t-1)dt= -log|t^2+1|+log|t+1|+log|t-1|= log|(t^2-1)/(t^2+1)|= log|2{x^2+x√(x^2-1)-1}/2x{x+x√(x^2-1)}|= log|x/√(x^2-1)| となったのですが、回答では√(x^2-1)/xとなるそうです。 何処が間違えているのかどなたかお教え下さい。