- 締切済み
論理学に関する質問
この二つの定義のどちらも正しいとすると矛盾が生じるのは何故ですか? (恐らく自分が何か間違えていると思うのですが、何が悪いのか分かりません) 1 .排中律の言葉による定義 : 命題は成立するか成立しないかのどちらか以外は起こらない。 2 . 排中律の論理式による定義 : 「P ∨ (¬P) は真」の事である ソース : http://www.ozawa.phys.waseda.ac.jp/pdf/ronritoshugo.pdf 説明 ∨の定義 : 与えられた複数の命題のいずれか少なくとも一つが真であることを示す論理演算(https://ja.wikipedia.org/wiki/%E8%AB%96%E7%90%86%E5%92%8C) ∨の定義によって、P ∨ (¬P) は真を満たすためには、Pか¬Pが真であればよい よって、Pが真であって、¬Pは偽ではなくうんこだと仮定しても、P ∨ (¬P)は成り立つため、2の排中律の論理式による定義に違反はしていない しかし、1の排中律の定義には違反している よって二つの定義が正しいとすると矛盾している 先にこれから言われそうなことに対して質問しておきます 1 . 命題には、真か偽しかない そのため、偽でもないうんこというものがあるのはおかしい 1の質問 : 命題には真か偽しかないのであれば、排中律がある意味は何ですか? 2 . Pが真であるとき、¬Pは偽であるから、うんこではない 2の質問”Pが真であるとき、¬Pは偽である”が正しいといえるのは、何故ですか?
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- f272
- ベストアンサー率46% (8537/18277)
> 1の質問 : 命題には真か偽しかないのであれば、排中律がある意味は何ですか? 命題には真か偽しかないというのが排中律です。 > 2の質問”Pが真であるとき、¬Pは偽である”が正しいといえるのは、何故ですか? それが¬Pの定義です。Pが真であれば¬Pは偽であり,Pが偽であれば¬Pは真である。