• ベストアンサー

数学III 積分 立体

座標空間において、3点A(-2, -2, 0), B(6, -2, 0),c(-2, 4, 0)をとり、 球S : x^2+y^2+(z-4)^2≦4とする。点Pが△ABCの周および内部を、点Qは球Sの表面および内部を動くとき、線分PQの中点Mが動いてできる立体をVとする。 (1)点Pを固定したとき、中点Mの軌跡を求めよ。  P(a,b,0)とおく。 (x-a/2)^2+(y-b/2)^2+(z-2)^2≦1 (2)立体V の体積を求めよ。 (2)の解説をお願いします。 よろしくお願いします。

noname#249855
noname#249855

質問者が選んだベストアンサー

  • ベストアンサー
  • info33
  • ベストアンサー率50% (260/513)
回答No.1

(1)点Pを固定したとき、中点Mの軌跡を求めよ。  P(a,b,0)とおく。 (x-a/2)^2+(y-b/2)^2+(z-2)^2≦1 ... (*1) A(-2,-2,0), B(6,-2,0), C(-2,4,0) Pの範囲は△ABCの周囲と内部 AB=8, AC=6, BC=10, △ABCは3辺がAB=8, AC=6, BC=10の直角三角形 (周囲の長さ=24) (*1)の中心の軌跡は, △A'B'C'は3辺がA'B'=4, A'C'=3, B'C'=5の直角三角形 但し, A'(-1,-1,2), B'(3,-1,2), C'(-1,2,2) (周囲の長さ=12) (2)立体V の体積を求めよ。 >(2)の解説をお願いします。 真ん中の三角柱部分, 3つのかまぼこ型の部分, 3つの半径1の分割球体(一つの球分) に分割して考える。 V=((1/2)3*4*2+(1/2)π*1^2*(4+3+5)+(4/3)π*1^3=12+6π+(4/3)π =12+(22/3)π

noname#249855
質問者

お礼

ありがとうございました。無事に解決できました。

関連するQ&A

  • 数学の軌跡の問題

    大学入試問題集の数学の軌跡の問題について質問です。 問題・・・ 座標平面上に2点O(0,0),A(2,4)と円;x^2+y^2=64がある、また、Pをこの円周上の点とし、2点P,Aを通る弦をPQとする。 点Pが円周上を動くとき、弦PQの中点をMとして、動点Mの軌跡の方程式を求めよ。 答え・・・弦PQは点A(2,4)を通るから、 a(x-2)+b(y-4)=0とおけ、 (1) PQの中点Mを通る直線OMは、bx-ay=0 (2)とおける。 (1)、(2)をみたす実数a.b(a^2+b^2≠0)が存在するためのx,yの条件を求める という流れなのですが、(a^2+b^2≠0)というのがどこからでたのかがわかりません。 あと、(1)と(2)の式は、中点Mをa,bとおくと、OMはbx-ay=0 ・・・(2) 中天MはOから直線PQにおろした垂線の足であるので、PQの傾きは-a/b. PQは点A(2,4)をとおるのでy=-a/b.(X-2)+4なのでa(x-2)+b(y-4)=0・・・(1) とおける。というやり方で導いたのですが、違いますでしょうか?

  • 数III 積分 立体

    xyz空間において、不等式x^2≦y,y^2≦z,z^2≦xの表す立体の体積Vを求めよ。 よろしくお願いします。

  • 数学IIIの体積

    数学IIIの体積の問題の解き方を教えてください。xy平面上に曲線C:y=x²がある。C上の2点P、QがPQ=2を満たしながら動くとき、PQの中点の軌跡をDとする。(D:y=x²+1/(4x²+1)) C、D、y軸及び直線x=1/2で囲まれた部分をx軸まわりに1回転させてできる立体の体積を求めるとどうなりますか?

  • 数III 積分

    y=sinx(0<x≦π)上に点Pをとる。点Pを通るy軸に平行な直線と直線y=-xとの交点をQとする。線分PQを1辺とする正三角形を作り、Pを可能な限り動かすとき、、正三角形が通過してできる立体の体積を求めよ。 ただし、三角形はxy平面について、つねに同じ側にあるものとする。 よろしくお願いします。

  • 積分の問題について

    曲線y=Logxとx軸、y軸、y=1で囲まれる図形Sについて Sをx軸のまわりに1回転にできる立体の体積 Sをy軸のまわりに1回転にできる立体の体積 曲線y=logx上の点P(t,logt)(t≧1)からx軸に垂線PQを下ろし、PQを通りx軸に垂直な平面上にPQを1辺とする正三角形PQRのとき、△PQRの面積 1≦t≦eの範囲でPが曲線上を動くとき、△PQRの周または内部の点が通過してできる立体の体積 めっちや困まってます。よろしくお願いします。

  • ベクトルの問題です

    空間の点Pから平面x+y-z=0に垂線を下し、その足をMとしPMの延長上にPM=MQとなる点Qをとる。 点Pが直線x=y+1=z-1の上を動くとき、点Qの描く図形の方程式を求めよ <教科書の回答> P(x、y、z)、 Q(X.Y,Z)とおくと Pは直線上の点であるから x=y+1=z-1 。。。。。(A) PQ→は平面の法泉ベクトルの一つだから、 (X-x、Y-y、Z-z)=K(1,1、-1)。。。(B) PQの中点( (X+x) / 2 , (Y+y)/2、 (Z+z) /2 )が平面上にあるから、 (X+x) /2 + (Y + y) /2 (-Z+z) /2 =0 ∴X+Y-Z+x+y-z=0。。。。。(C) (A)(B)(C)からx、y、z、kを消去すれば良い X,Y,Zをx、y、zに書き換えて x=y+1=(z+7)/5 質問です、 法線ベクトルについては理解してるつもりですので、 Bについては理解できました。 Aでは、Pは直線状の点、 Bでは、PQが垂線なので、法線ベクトルでもいいではないか?と考えて、x+y-zの法線ベクトルを1.1.-1とおいて外にKを置けば =(X-x、Y-y,Z-z)のイコールの関係になるのはわかりました。 Cは、PQの中点の公式より、中点の座標を求めてます。 その後、なぜだか?X+x/2 + Y+y/2 ーZ+z/2 =0とzの項ではマイナスとなっていて、(たぶんx+y-z=0に代入したと思うのですが) そこから得たこのCとは何か不明です、またなぜPQの中点をx+y-zに 代入する必要があるのですか?>_<?? 最後は なぜ、この題意の点Pが直線x=y+1=z-1 の上を動くとき点Qの描く図形の方程式を求める際に、 このA,B,Cを使って、消去すれば題意の求めてる回答が得られるのでしょうか??なぜ、これらをあわせると回答が得られるのかわかりませんでした。 どなたか教えて下さい、宜しくお願いします!!>_<!!

  • ベクトルの問題です

    半径1の球Sが原点0でxy平面に接しているとき、原点0の直径対点をNとする。球面Sと平面y-z=0との切り口の上に点P(x、y、z)を取り、直線NPがxy平面と交わる点をQとする。点Pが切り口上を動く時、点Qはxy平面上でどのような図形を描くか? 解答 P(x、y、z)Q(X,Y,Z)とおくと、Pは直線上の点であるからx=y+1=z-1.。。。。(A) PQ→は平面の法線ベクトルであるから (X-x、Y-y、Z-z)=k(1.1.-1)。。。(B) PQの中点( (X+x)/2 (Y+y)/2 (Z+z)/2 ) が平面上にあるから (X+x)/2 + (Y+y) /2 ー (Z+z) /2 = 0 ∴X+Y-Z+x+y-z=0 。。。。(C) (A)(B)(C)からxyzkを消去すればよい。 XYZをxyzに書き換えて、 x=y+1=(z+7)/5 質問です! まず(A)の部分で、Pは直線状の点。これは、切り口上の上を歩くのでわかるのですが、どうしてその式がx=y+1=z-1となるのですか? 二つ目は、PQ→は平面の法線ベクトルなので X-xとかY-yとするのはわかるのですが、なぜK(1,1.-1) となるのですか?Kは公式についてたとおもいますが、 そのなかの1,1、-1という部分が不明です。 もしかしたら、なにか、直径1の円という話で、x軸1、y軸1、z軸1というのに関係するのですか??? 質問3は、どうして、PQの中点が出てきたのですか? これで問題が解けるという発想がわかりませんでした。理由はなんですか?? あと、 X+x/2 +Y+y/2 ーZ+z/2 =0 という右辺の0というのと、なぜzの部分だけ、マイナスと符号が変わっているのですか?? どなたか教えてください。 あと数学は関係式を作れば問題は解答まで導けると学びました、 関係を式で表した時点で、問題がとけるとまなびました。 こんかい、中点の関係を引き出した理由がよくわかりませんでした。 そして文字を消去という流れになったので、どなたか詳しく教えてください!!お願いします!!!>_<!!!

  • 数学(ベクトル)の問題

    http://okwave.jp/qa/q8022847.html のNO.7の回答より、 さらに途中式を書いたのですが、 L^2 = m(t-n(s))^2-(a1^2+b1^2+c1^2 ) {(c1(z2-z1)+b1(y2-y1)+a1(x2-x1)+(a1a2+b1b2+c1c2)s)/(a1^2+b1^2+c1^2 )}^2+(a2^2+b2^2+c2^2 ){(s^2 )+2s{c2(z2-z1)+b2(y2-y1)+a2(x2-x1)}/{(a2^2+b2^2+c2^2 )} }+{(x2-x1)^2 }+{(y2-y1)^2 }+{(z2-z1)^2 } n(s)={c1(z2-z1)+b1(y2-y1)+a1(x2-x1)+(a1a2+b1b2+c1c2)s}/(a1^2+b1^2+c1^2 ) = m(t-n(s))^2-{c1(z2-z1)+b1(y2-y1)+a1(x2-x1)+(a1a2+b1b2+c1c2)s}^2/(a1^2+b1^2+c1^2 )+(a2^2+b2^2+c2^2 ){(s^2 )+2s{c2(z2-z1)+b2(y2-y1)+a2(x2-x1)}/{(a2^2+b2^2+c2^2 )} }+{(x2-x1)^2 }+{(y2-y1)^2 }+{(z2-z1)^2 } = m(t-n(s))^2-{c1(z2-z1)+b1(y2-y1)+a1(x2-x1)+(a1a2+b1b2+c1c2)s}^2/(a1^2+b1^2+c1^2 )+(a2^2+b2^2+c2^2 )(s^2 )+2s{c2(z2-z1)+b2(y2-y1)+a2(x2-x1)}+{(x2-x1)^2 }+{(y2-y1)^2 }+{(z2-z1)^2 } ところで {c1(z2-z1)+b1(y2-y1)+a1(x2-x1)+(a1a2+b1b2+c1c2)s}^2 = {c1(z2-z1)+b1(y2-y1)+a1(x2-x1)}^2 +2{c1(z2-z1)+b1(y2-y1)+a1(x2-x1)}(a1a2+b1b2+c1c2)s +{(a1a2+b1b2+c1c2)s}^2 = {c1(z2-z1)+b1(y2-y1)+a1(x2-x1)}^2 +2{c1(z2-z1)+b1(y2-y1)+a1(x2-x1)}(a1a2+b1b2+c1c2)s +(a1a2+b1b2+c1c2)^2 (*s)^2 これより、 L^2= m(t-n(s))^2+s^2 {(a2^2+b2^2+c2^2 )-(a1a2+b1b2+c1c2)^2/(a1^2+b1^2+c1^2 )} +s[2{(c2(z2-z1)+b2(y2-y1)+a2(x2-x1))-{c1(z2-z1)+b1(y2-y1)+a1(x2-x1)}(a1a2+b1b2+c1c2)s/(a1^2+b1^2+c1^2 )}] +{(x2-x1)^2 }+{(y2-y1)^2 }+{(z2-z1)^2 }-{c1(z2-z1)+b1(y2-y1)+a1(x2-x1)}^2/(a1^2+b1^2+c1^2 ) 簡単、 L^2 =m(t-n(s))^2+ps^2+p1s+p2 =m(t-n(s))^2+p(s^2+p1s/p)+p2 =m(t-n(s))^2+p(s^2+p1s/p+(p1/p)^2-(p1/p)^2 )+p2 =m(t-n(s))^2+p(s^2+p1s/p+(p1/p)^2 )-(p1)^2/p+p2 まで、計算したのですが(間違っていたら申し訳ありません)、 ここから、どのように q=-p1/2p が導出できるのかがわからないです。 (rは導出できました。) 数式だらけで分かりづらいと思いますが、計算ミスを指摘しつつ、導出過程も分かりやすくお願いします。

  • 座標平面上において、放物線y=x^2上に異なる2点

    座標平面上において、放物線y=x^2上に異なる2点P,Qをとり、線分PQの中点をMとし、Mの座標を(a, b)とする。 (1) a=1, b=3のとき、線分PQの長さPQを求めよ。 (2) PQ=4の とき、b を a の式で表せ。 (3) PQ=4を満たしながらP, Qを動かすとき、b の最小値を求めよ。 (1)のPQが2√10になるのはわかりました。

  • 座標平面上において、放物線y=x^2上に異なる2点

    座標平面上において、放物線y=x^2上に異なる2点P,Qをとり、線分PQの中点をMとし、Mの座標を(a, b)とする。 (1) a=1, b=3のとき、線分PQの長さPQを求めよ。 (2) PQ=4のとき、b を a の式で表せ。 (3) PQ=4を満たしながらP, Qを動かすとき、b の最小値を求めよ。 この問題教えてください!