• ベストアンサー
  • 暇なときにでも

ベクトルの問題です

空間の点Pから平面x+y-z=0に垂線を下し、その足をMとしPMの延長上にPM=MQとなる点Qをとる。 点Pが直線x=y+1=z-1の上を動くとき、点Qの描く図形の方程式を求めよ <教科書の回答> P(x、y、z)、 Q(X.Y,Z)とおくと Pは直線上の点であるから x=y+1=z-1 。。。。。(A) PQ→は平面の法泉ベクトルの一つだから、 (X-x、Y-y、Z-z)=K(1,1、-1)。。。(B) PQの中点( (X+x) / 2 , (Y+y)/2、 (Z+z) /2 )が平面上にあるから、 (X+x) /2 + (Y + y) /2 (-Z+z) /2 =0 ∴X+Y-Z+x+y-z=0。。。。。(C) (A)(B)(C)からx、y、z、kを消去すれば良い X,Y,Zをx、y、zに書き換えて x=y+1=(z+7)/5 質問です、 法線ベクトルについては理解してるつもりですので、 Bについては理解できました。 Aでは、Pは直線状の点、 Bでは、PQが垂線なので、法線ベクトルでもいいではないか?と考えて、x+y-zの法線ベクトルを1.1.-1とおいて外にKを置けば =(X-x、Y-y,Z-z)のイコールの関係になるのはわかりました。 Cは、PQの中点の公式より、中点の座標を求めてます。 その後、なぜだか?X+x/2 + Y+y/2 ーZ+z/2 =0とzの項ではマイナスとなっていて、(たぶんx+y-z=0に代入したと思うのですが) そこから得たこのCとは何か不明です、またなぜPQの中点をx+y-zに 代入する必要があるのですか?>_<?? 最後は なぜ、この題意の点Pが直線x=y+1=z-1 の上を動くとき点Qの描く図形の方程式を求める際に、 このA,B,Cを使って、消去すれば題意の求めてる回答が得られるのでしょうか??なぜ、これらをあわせると回答が得られるのかわかりませんでした。 どなたか教えて下さい、宜しくお願いします!!>_<!!

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

nana070707様 >法線ベクトルでもいいではないか?と考えて この問題で一番気が付きにくいのが、PQを法線ベクトルと考える点です。 それを理解してるのに・・・ 平面上で、ある直線を対称の軸として点P(x、y)を対称移動した点Q(X、Y)を求めよ。 例えば直線x+2y+3=0 点(x、y)=(5、6)とでもします。 この問題は  (1)PQの中点が直線x+2y+3=0の上にある事 (2)直線x+2y+3=0 と PQが垂直である事 このふたつ条件で、Q(X、Y)が求まります (1)は中点座標M((5+X)/2、(6+Y)/2)を直線x+2y+3=0 に代入して ((5+X)/2)+2(6+Y)/2)+3=0 です 式が意味が持つのは、ここまでで その後は機械的な計算は無意識と・・・ (2)は平面上の法線ベクトルを使用して(X-x、Y-y、)=K(1,2)とも書けますが、・・・・・・ さて、この問題を空間の問題にしたのが、質問の問題です 線対称が面対称に変化しますが、ふたつは基本的には同形の問題です。 中点M((x+X)/2,(y+Y)/2,(z+Z)/2)の座標を、平面x+y-z=0に代入して (X+x)/2 + (Y+y)/2 ー(Z+z)/2 =0 が得られます 式の意味は、中点Mが平面x+y-z=0の上にある です もし、これでも意味がわかりにくければ、平面の線対称の問題を先にやる事を薦めます。 >なぜ、この題意の点Pが直線x=y+1=z-1 の上を動くとき点Qの描く図形の方程式を求める際に、このA,B,Cを使って、消去すれば題意の求めてる回答が得られるのでしょうか??なぜ、これらをあわせると回答が得られるのかわかりませんでした。 極論すると 数学では、問題を解くための条件を式にした段階で終了なのです A,B,C を出した段階で終了です。 なんらかの式変形で X、Y、Zの関係が出れば満足して下さい。 しかし実際にはx、y、z、kを消去して x=y+1=(z+7)/5 を出すのが中々大変で、計算ミスばかりして、苦労しました。 x、y、z、kを消去する方法がわからなかったら、またお尋ね下さい。 PS この問題は旧課程の問題で教科書にはないはずですが?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました!わかりました♪ あとこの本は10歳年が離れたうちの兄が昔使ってた本です。 で、無理やり押し付けられたので使ってるだけです>_< ありがとうございました!!

その他の回答 (1)

  • 回答No.1

問題を整理すると↓です. 1.点Pは直線x=y+1=z-1の上を動く. 2.線分PQの中点Mは平面平面x+y-z=0上にある. 点Q(X, Y, Z)とおくと,X, Y, Zの間に成立する関係式(図形)は どのようになるかを求めよ. 解説↓ 点P(x, y, z)は式(A)を満たす. PQ→は平面の法線ベクトルの一つだから、式(B)を満たす. 線分PQの中点M( (X+x) / 2 , (Y+y)/2、 (Z+z) /2 )は 平面上の点だから((X+x)/2) + ((Y+y)/2) - ((Z+z)/2) = 0を満たす. 求めたいのは点Q(X, Y, Z)のX, Y, Zの間に成立する関係式なので,x, y, zを消去して,X, Y, Zのみ含まれる式を求める. これで理解できましたか?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

わかりました!ありがとうございました!!

関連するQ&A

  • ベクトルの問題です

    半径1の球Sが原点0でxy平面に接しているとき、原点0の直径対点をNとする。球面Sと平面y-z=0との切り口の上に点P(x、y、z)を取り、直線NPがxy平面と交わる点をQとする。点Pが切り口上を動く時、点Qはxy平面上でどのような図形を描くか? 解答 P(x、y、z)Q(X,Y,Z)とおくと、Pは直線上の点であるからx=y+1=z-1.。。。。(A) PQ→は平面の法線ベクトルであるから (X-x、Y-y、Z-z)=k(1.1.-1)。。。(B) PQの中点( (X+x)/2 (Y+y)/2 (Z+z)/2 ) が平面上にあるから (X+x)/2 + (Y+y) /2 ー (Z+z) /2 = 0 ∴X+Y-Z+x+y-z=0 。。。。(C) (A)(B)(C)からxyzkを消去すればよい。 XYZをxyzに書き換えて、 x=y+1=(z+7)/5 質問です! まず(A)の部分で、Pは直線状の点。これは、切り口上の上を歩くのでわかるのですが、どうしてその式がx=y+1=z-1となるのですか? 二つ目は、PQ→は平面の法線ベクトルなので X-xとかY-yとするのはわかるのですが、なぜK(1,1.-1) となるのですか?Kは公式についてたとおもいますが、 そのなかの1,1、-1という部分が不明です。 もしかしたら、なにか、直径1の円という話で、x軸1、y軸1、z軸1というのに関係するのですか??? 質問3は、どうして、PQの中点が出てきたのですか? これで問題が解けるという発想がわかりませんでした。理由はなんですか?? あと、 X+x/2 +Y+y/2 ーZ+z/2 =0 という右辺の0というのと、なぜzの部分だけ、マイナスと符号が変わっているのですか?? どなたか教えてください。 あと数学は関係式を作れば問題は解答まで導けると学びました、 関係を式で表した時点で、問題がとけるとまなびました。 こんかい、中点の関係を引き出した理由がよくわかりませんでした。 そして文字を消去という流れになったので、どなたか詳しく教えてください!!お願いします!!!>_<!!!

  • ベクトルの問題です 

    空間において、二点P.Qは直線l;2x=y=zと直角に交わる直線上あって、直線PQはlによって常に1:2の比に内分されているとする。Pが平面5x+2y-z=1の上を動くとき、Qが描く図形の方程式を求めよ。 解答 直線l;2x=y=zの方向ベクトルはl→=(1.2.2)である。 ア.P(x、y、z)、Q(X,Y,Z)とするとき PQ→がl→に垂直であるから、 l→・PQ→=(X-x)+2(Y-y)+2(Z-z)=0 ..(A) イ.線分PQを1:2に内分する点Rは ( (2x+X)/3 , (2y+Y)/3 , (2z+Z)/3 ) であり、これがl上にあるから 2(2x+X)=2y+Y=2z+Z.......(B) ウ.Pは平面 5x+2y-z=1上にあるから 5x+2y-z=1......(C) 以上からx、y、zを消去すればよい。 (B)から y=2x+X-Y/2、z=2x+X-Z/2 これは(A)、(C)に代入して整理すると、それぞれ -3x-X+Y+Z=0 .....(D) 14x+2X-2Y+Z=2 ......(E) D×14+E×3    -8X+8Y+17Z=6 よって、点Q(X,Y,Z)のえがく図形は、平面 8x-8y-17z+6=0 である。 質問1:直線l;2x=y=zの方向ベクトルがなぜ、(1.2.2)なのですか?確か係数の部分が方向ベクトルに成ると学んだ気がするのですが、そうすると(2.1.1)と考えましたけど>_<?? 質問2:線分PQを1:2に内分する点Rは2x+X/3 etc.. となってましたが、分母が3になるのは、1:2で3と見てるからだと思いますが、なぜ分子が2x+Xetc..となってるのでしょうか? どなたか教えてください、宜しくお願いします!!

  • ベクトルの問題がわかりません・・・

    直線x-10/2=y-20/-10=z/5に垂直で、点Q(5,15,10)を通る直線を求める問題があります。 (2,-10,5)が法線ベクトルで2(x-5)-10(y-15)+5(z-10)と答えを出してみたのですが、 この解き方は平面上の点と直線の場合の様な気がします。 今回の様な空間の場合はどのようにして垂直な直線を求めれば良いのですか?

  • 楕円面上の法線ベクトル

    楕円面 F(x,y,z) = x^2/a^2 + y^2/b^2 + z^2/c^2 -1 = 0 (a)楕円面上の点 P0 = (x0,y0,z0) における法線方向を指すベクトルを求めよ。 (b)P0における法線上の任意の点を P = (x,y,z) とすると、線分P0Pは(a)で求めたベクトルと平行である。このことを用いて、楕円面のP0を通る法線の方程式を求めよ。 (c)P0における接平面上の任意の点を P = (x,y,z) とすると、線分P0Pは(a)で求めたベクトルと垂直である。このことを用いて、楕円面のP0を通る法接平面の方程式を求めよ。 自分なりに考えた解答があっているかを教えていただきたいです----- (a)原点 O = (0,0,0) から楕円面上の点 P0 = (x0,y0,z0) に伸ばしたベクトルは、当然 点P0の接平面 に垂直なので 法線ベクトル →P0 = (x0,y0,z0) (b) →P0P = (x,y,z) - (x0,y0,z0) = (x-x0,y-y0,z-z0) これに平行なので (x-x0)/x0 = (y-y0)/y0 = (z-z0)/z0 (c) →P0P = (x,y,z) - (x0,y0,z0) = (x-x0,y-y0,z-z0) これに垂直なので内積がゼロ、よって x0(x-x0)+y0(y-y0)+z0(z-z0) = 0 ----- 特に(b)はあっていますか? よろしくおねがいします。

  • 空間ベクトルの問題です。

    問題は次のようなものです。 空間内の直線 (x-1)/2 = y+2 = 1- z を含み 点(1、2、-1)を通る 平面の方程式を求めよ。 解答は x + 2y + 4z = 1 ですが、どうやって計算するか分りません。 よく法線ベクトルと1点から平面の方程式を求めるようですが、この問題では どうしたらいいのでしょうか? お分かりになる方がいましたら、お教えください。お願いします。

  • ベクトルの問題についてです。

    xyz平面において、平面の式をx+2y+3z=6としし、点X(1.1.1)が存在し、 平面とx,y,z軸との交点をそれぞれA、B、Cとする。 ある点、D(p.q.r)が平面上にある時、 ODベクトル=OAベクトル+t1ABベクトル+t2ACベクトル となる実数t1とt2が存在することを示せ。 一応これが問題なのですが、私にはさっぱりわかりません・・ どなたか回答をお願いします。

  • ベクトルの問題で分らないのがあるので教えてください

    ※a→は「aベクトル」という意味です。 (1)△OABがあります。点Pが次のベクトル方程式を満たすとき、点Pの描く図形を求めてください。ただし、OA→=a→、OB→=b→、OP→=p→とします。(途中式もお願いします。) (1)|2p→-a→-b→|=4 (2)(p→-a→)・(p→-b→)=0 (2)空間内に4点A(0、1、2)、B(1、0、-1)、C(-1、1、4)、D(x、y、z)があります。 4点A、B、C、Dが同一平面上にあるとき、x、y、zの関係式を求めてください。(途中式もお願いします。) ちなみに答えは、 (1)(1)線分ABの中点を中心とする半径2の円 (2)線分ABを直径とする円 (2)2x-y+z-1=0 です。

  • 空間ベクトル

    空間内に2直線 x+1=(y-1)/a=z (1) -x+1=y+b=(z-1)/2 (2) があり(1)、(2)は交わり、そのなす角は60度である そのとき a=? B=? どのように解くかわかりません。 おねがいします 方程式を解くと x=-2/3 z=1/3 となったのですがどのように解くかわかりません。 空間においては、 ベクトルu=(p,q,r)に平行で、点(a,b,c)を通る直線の方程式は (x-a)/p=(y-b)/q=(z-c)/r と表すことができます。 また、ベクトルuのことを「直線の方向ベクトル」ということしかわかりません。 全くわからないのでおしえてください

  • ベクトルの問題です>_<??

    座標平面上に4点A(1.3)、B(4.1)、C(4.3)D(3,7/3)がある。 (1)DC→=kDA→+lDB→となる実数k、lを求めよ。 (2)動点Pが、PA→+PB→+PC→の大きさが9であるように動くとき、Pはどのような図形を描くか。 誰かこの問題おしえてください! ベクトルの問題で成分のところを参照しながら解きました。 そしたらDC=(1.2/3) DA=(-2,2/3) DB=(1.-4/3)になって、このまま(1)の題意のとおりに 代入してといたら、(1)の答えはk=-1とl=-1になりました。 ココで質問なのですけど、どうしてベクトルの成分の座標の長さは たとえば、P(p1,p2),Q(q1,q2)の時、 PQ→=(q1-p1,q2-p2)と教科書に書いてるのですけど。。。。 昔長さを求める時習ったのは l=√(p2-p1)^2+(q2-q1)^2と習ったのですけど、どうして今回は違うのですか?? あと、(2)はよくわかりませんでした>_< ヒントはP(x,y)としたら、  PA→+PB→+PC→=(9-3x、7-3y) と式が作れる、みたいなのですけどどうやったらこの式が出来るのか方法がわかりません>_<?? P(x、y)として、 Aは(1.3)Bは(4,1)、C(4.3)これらを元にしてどうやったら上の式が作れるのですか?? 誰か教えてください>_<!! よろしくお願いします!!!

  • 平面ベクトルの例題

    次の問題の解答がよくわからないです 3次元空間において、原点を通り法線ベクトルが(a,b,c)である平面pがある。空間の点(x,y,z)に対し平面に関して対称の位置にある点を(x',y',z')とする。x',y',z'をa,b,c,x,y,zで表せ。  たぶん a(x+x'/2 -x)+b(y+y'/2 -y)+c(z+z'/2 -z)=0になると思いますがそこからそれぞれをabcxyzのみでどう表すのかわかりません。 教えてください。