ステンレス鋼の表面不動態膜の計測方法

このQ&Aのポイント
  • ステンレス鋼の耐食性=不動態膜(酸化皮膜)であることは理解するが、定量的な計測方法は存在しない。
  • 製品の皮膜の形成状況を簡単に計測できる装置を探している。
  • さらに、皮膜の強弱を測定できる機能があると望ましい。
回答を見る
  • 締切済み

ステンレス鋼 表面不動態膜の計測方法

ステンレス鋼の耐食性=不動態膜(酸化皮膜)であることは理解するのですが、塗装被膜のように定量的に計測されたものに出会ったことがありません。 大気中にしばらく置いてあれば被膜は自動的に形成されてOK、品質的にも問題なし…というのも分からないではありませんが、昨今のエンドユーザーの要求にはそれでは済まないものが出てくる可能性が多分にあります。 製品の皮膜が形成されているかどうかを簡単に計測できる装置(ハンディタイプ)を、どなたかご存じではないでしょうか? 更に欲を言えば、皮膜には強弱もあるわけですから、その測定機能があるのならば何も言うことはありません。 よろしくお願いいたします。

noname#230358
noname#230358
  • 金属
  • 回答数1
  • ありがとう数1

みんなの回答

noname#230359
noname#230359
回答No.1

測定方法として下記で測定したことがあります。  分析方法:電子分光化学分析法(ESCA)  SEMATECによる試験方法  平均CrO/FeO 比  試験材料:SUS316L-BA ステンレス表面、数ミクロンを測定します。 SEMATECで検索してみてください。 測定器が(7年くらい前だと記憶します)日本には無くアメリカにサンプルを送りました。 費用は10万単位のべらぼうでした。 なので、ハンディタイプの測定器はほしいです。

noname#230358
質問者

お礼

早々のご回答ありがとうございます。 頂いた情報から色々検索してみましたが、先端領域に触れるようなところに行ってしまい、正直力尽きました。 どうやら簡便な装置は存在しないようです。 「無い」ということが分かっただけでも良しとしようか…と思っています。 ありがとうございました。

関連するQ&A

  • ステンレス鋼表面の不動態

    ステンレス鋼は、鉄に含有されたクロムが空気中で酸素と結合して表面に不動態皮膜(不動態?)をつくるため錆びにくいと聞いたことがあります。 腐食の定義を調べたところ 「金属の腐食は酸化還元反応により表面の金属が電子を失ってイオン化し金属面から脱落して行くことで進行する。生じたイオンは酸素により酸化物、水酸化物あるいは炭酸塩(緑青の場合)となり表面に堆積することが多い。」 ここで疑問なのですが、ステンレス鋼の場合も、クロムが酸素と結合して、酸化皮膜を形成しているのに、これは腐食とは全く異なることなのですか?

  • 不動態の「緻密な酸化皮膜」って?

    不動態の説明で「緻密な酸化皮膜」という言葉をよく見かけますが、この「緻密な」というのにどんな意味があるのでしょうか。 単に「均一な膜になっているわけではない」というだけの話でしょうか。 緻密じゃない酸化皮膜だったら腐蝕する(しやすい)が、緻密な酸化皮膜なら腐蝕しない(しにくい)ということはあるのでしょうか。 さらに極端に言えば「○○という金属が、酸化○○の皮膜を作って不動態となる場合、酸化○○を溶かす液体には一般に単体も溶ける」と言ってしまうことはできるのでしょうか。

  • 電子は不動態被膜を通り抜けることができますか

    SUS316Lステンレス鋼が、塩分濃度3%、20℃の海水中で腐食する現象について調べています。 塩化物イオン等によって不動態皮膜が部分的に破壊され、Fe2+が海水中に溶出する際に、素材中から放出される電子はどのようにして絶縁体である不動態被膜を通り抜けているのでしょうか。 たとえばトンネル効果によって、ステンレス鋼が激しく腐食する反応が成立する程の多量の電子が不動態皮膜を通り抜けることは可能でしょうか。 それとも、多くの電子が不動態皮膜を通過することは実際には難しく、不動態が破壊された場所から順次電子が放出されて、腐食が進行していくのでしょうか。 この点について詳しくご教示いただければ幸いです。 よろしくお願いいたします。

  • 銅 自然にできる緑青で不動態??

    緑青に関して、wikipediaで 【緑青は、酸素の触れる表面にのみ発生し、比較的脆いため落とすことが出来る上、緑青が金属の表面に発生すると皮膜が生じ不動態となり、内部の腐食を防ぐ効果がある。ブロンズ像は、緑青の皮膜のお陰で長期間原型を留めることを可能としている。】 とまるで天然の緑青が、空気に対して不動態になり、空気中の銅のそれ以上の酸化を 防ぐというような記述があるのですが、これは本当ですか? 不動態形成を狙って意図的(人工的)に酸化皮膜を作る場合 あるいは環境中で経年でそうなるように狙って何かを作る場合と違って 自然にできる緑青程度では緻密さが足りず、銅の酸化を防ぐ能力は無いように思うのですが?

  • ステンレス

    初めまして。ステンレス製品を扱っている者ですが、ステンレスの機械加工や溶接した箇所で、比較的短時間(3日以内)に塩水噴霧試験による赤さびが発生しました。 文献などを読みますと機械加工や溶接などにより不動態被膜が作られず、本来の耐食性が失われる場合もあるとは書いてありますが、これほど短時間に錆びるものなのでしょうか? もしそれ以外の考えられる理論および事例をご教授願えたら幸いです。 宜しくお願いいたします。

  • ステンレスナイフに防錆油を塗ることの是非

    ステンレスナイフ・包丁の保管は、「水気を拭き取り、乾燥した場所に置いておけば十分で、防錆油の塗布は必要ない」と理解しています。 質問は【防錆油を塗ると問題が起こるか否か】です。 例えば、アウトドアで使用して傷ついたステンレス表面の不動態被膜が、再形成される前に防錆油で酸素が遮断され、腐食の原因になるでしょうか。 または、一旦形成された不動態被膜に対し酸素が遮断されることで、これが消滅する可能性があるでしょうか。

  • 42合金へのパシベーション処理

    耐食性を付与するためにステンレス材料の表面に硝酸などでパシベーション(不動態化)処理をする事があると思いますが、同様に、42合金へのパシベーション処理は可能(存在する?)でしょうか? もしあるようでしたら、処理内容なども含めて教えて頂ければ幸いです。 また、それ以外にも表面に薄い酸化膜を形成する程度(めっきや塗装以外)の、耐食性が得られる表面処理等ご存知でしたらそちらもお願いします。 以上、宜しくお願い致します。

  • ステンレス鋼の溶接焼け

    ステンレス鋼の溶接焼けを同じステンレスだからと言ってステンレスワイヤー ・ブラシを擦り付け焼け取りするような阿呆が未だ此の日本にも存在している そもそもステンレスの成分は18-8の残部の殆どが鉄(Fe)であると理解も出来ず 知ろうという意識も意欲も無く仕事をするので、忠告も言うことも聞かない。 単に酸洗いの手間と時間を省き、楽をしたいからのの”手抜き”ですよねぇ? 戻って、質問だがw 前述のステンレスワイヤー・ブラシを擦り付け焼け取りする場合の比較対象と 言いますか、そのような明確な文献か実験データを御存知でしたら紹介して 頂ければ幸いです。(以上のことを知らない人にも警鐘を鳴らしておく) また、金属学に詳しい方のステンレスの錆に関する知見などを紹介下さい。 溶接焼けとは別に、ステンレスの錆についても広く見識を広めたいものです。 実務では溶接時のスパッタからサビ発生し、もらい錆びにも繋がったりします またステン材をグラインダー掛けで火の粉(ステンレス微粉)が隣のステンレス 母材表面に当たっただけで大きく耐蝕性が損なわれることも経験則としてある ステンレスというのは錆び難いのであるが、現場では取扱いに十分注意しない と却って手間が掛ってしまうことを、意外に知らないというよりも無頓着に 扱っている加工業者が多いことは残念ながらレベルが低いとも言えますかね これらは現場の作業者に如何に的確に筋を通して分り易く説明できるだけの 技術者が少ないことにも起因するだろう。ここ技術の森で見識を深めて頂き 皆様の現場でも活かして頂きたいと思いますので、更に文献など紹介下さい ↓のサイトは素人にも分かり易い言葉での説明がしてあります。しかしネット の情報は全てが正しいものばかりでは無いので、ここらを御享受頂いた文献で 確かめ、金属学的な見地から正しい「常識」を覚えきってしまいたいものです 「この焼けを取り去る工程を焼け取りといいますが、ステンレスワイヤーブラ シやスチールワイヤーブラシによって、表面を研削することにより、見た目は 綺麗になります。しかし、このような機械的研削法では、表面に不動態処理が 出来ないばかりか、不動態被膜が広く破壊されて、腐食の原因となります。」 http://www.okayasanso.co.jp/spesialty/welding/sus.php 「不動態化処理するには硝フッ酸に浸漬するか、酸性または中性の電解液で、 電気的に焼け取りをすることが必要になります。 最近では、安全で強固な不動態膜処理ができる装置も開発されていますので、 危険な毒劇物を使用する酸洗法よりも中性電解法または、弱酸性電解法をお薦 めします。」 不動態化処理と酸洗いの目的を即座に的確に答えられる技術屋になりましょう ここ「技術の森」の過去ログを調べていませんでしたが、今回のように文献に まで突っ込んで科学的・金属学的にまで深く説明されたものは無かったようだ ステンレスは傷付いても直ぐに不働態皮膜が再生されるというものの、全面に 渡って完全な状態には復元できないからこそ、錆難いという表現が正確である "Stainress"は直訳すると錆びないとか汚れやシミなどが発生しないだろうが 現実には意外に錆びやすい。尤もCr酸化による不働態皮膜自体が赤錆の生じない 錆が発生しているということも言える。これは亜鉛メッキが犠牲になって鉄部 を守り錆びないようにしているのに似ている。まるで今の私のようなんだなぁ 黒猫さんの回答(3)は忙しくて未だ見ていませんでしたが、これから拝見します 「SUS 製ワイヤーは焼け取り用ツールとしては不適当」 http://www.chemical-y.co.jp/faq/q20.html つまり現場で腐食性雰囲気であれば、酸洗せず、いきなりSUS 製ワイヤーだけ で擦ってもその場一時だけは綺麗になるが、直ぐに孔食という錆が発生すると いう経験をしたことがある。現場を知らない人間は分からないだろうと思う。 海沿いに近い環境での保管をする場合にもプレス部分での誘起マルテンサイト だけで明らかに周囲とは際立って錆が生じるのであって、錆び難い雰囲気であ れば鉄であろうと錆びないだろうから、ここらの目安は極めて重要であろう。 溶接焼け取りの「ステンレス電解研磨」メーカー・?山本ケミカル殿に直接メールで黒猫さんが気づかれた”同じ写真”という疑問ついて問い合わせしてみました。真実を希求する、この場に怪しい情報を提供してしまい申し訳ないです。ネットの情報は「ステンレス」についても誤ったものも多く気を付けないとなりません。。。 回答がありましたら、直ぐに此処に投稿したいと思うが、其れまで閉じません  『メーカーから回答が来ました。誇大広告だと煽ったせいか直ぐに返信が』 ”電解液にはフッ素化合物を配合しています”これには随分と驚かされます。 電解研磨にも限界があるのでしょうか。。。決定打にはならない気がします。 ********** 様 HPの写真の不備のご指摘、有難うございました。33-6には33-7とよく 似た写真が入るべきところ、33-5と同じものを入れておりました。 至急写真を入れ替えます。 さて「33-8だけ溶接の2番の外側の母材部分に孔食が生成しておらず、腐 食条件が他のものと同一とは思えない」とのご指摘ですが、33-7に見られ る様に、電解処理をすると、溶接の2番の孔食が消えるし、その外側の孔食も 減っています。ブラシでこすって不動態皮膜が損傷された所も、溶接の熱影響 部も電解処理で表面が陽極溶解現象で少し溶解して、同時に陽極酸化で不動態 皮膜が再生されるので、孔食が出なくなります。 33-5に硝フッ酸処理のテストピースの写真があり、ことのほか2番の孔食 が鮮明ですが、これも電解処理できれいに消せます。33-8の写真は腐食条 件が異なるのではなく、ステンレス鋼表面の不動態皮膜の耐食性が異なるため の結果です。 NEO#100Aは原子力向けを意識してハロゲン元素を入れていませんが、それ 以外の電解液にはフッ素化合物を配合しています。この電解液を使用すると、 不動態皮膜を再生する時にフッ素イオンも金属元素と結合し、酸化クロムの不 動態皮膜にフッ素が複合した新しい不動態皮膜が形成されまして、この被膜が 滅法「塩素イオン」に強く、孔食がもっと出にくくなります。 ご不審な点がありましたらご遠慮なくお問い合わせください。 *************************************** 〇〇 △□◎♡ 株式会社ケミカル山本 クリエイトセンター 企画室 室長 〒738-0039 広島県廿日市市宮内工業団地1-10 TEL:0829-30-0820 FAX:0829-20-2253 Email:tsuneyoshi@chemical-y.co.jp URL:http://www.chemical-y.co.jp *************************************** ステンレス鋼の溶接焼け ステンレスは不動態化処理が"命" 続ステンレスは不動態化処理が"命" http://www-it.jwes.or.jp/qa/details.jsp?pg_no=0050020720 http://www.okayasanso.co.jp/spesialty/welding/sus.php http://www.chemical-y.co.jp/faq/q1.html

  • 303ステンレスの不動態化処理

    はじめまして。ステンレス鋼の不動態化処理についてお尋ねします。 通常SUS316加工品は35%から最大50%の硝酸液に15分浸漬することで処理を実施しておりますが、先日めったに処理しないSUS303での加工品を同条件で処理しましたところ表面が火で炙ったような色に変色しました(薄い茶色)。ところが同じロット(50個入り)の同品は綺麗に仕上がっています。材料証明書を確認したところ、加工品は2つのチャージ番号で加工されており、二つのうち一つのモリブデン含有量が0.369%、もうひとつは0.08%でした。材料屋に確認しましたところ、不動態化処理上モリブデンの多いほうが理想であるとの回答が来ました。モリブデン含有量が異なる2つの同じSUS303を均一な状態に仕上げる最適な方法(濃度、時間)をご教授していただけないでしょうか?とりあえず浸漬時間を半分に短縮して処理したところ変色は見られませんでした。不動態化膜の形成を確認する簡単な方法がありましたら合わせてご教授ください。初歩的な質問で大変恐縮です。

  • ステンレス鋼不動態被膜の濡れ性

    質問No.43268「バブルチェック後のPT」の回答(4)の中に 「SUS304の表面は不動態被膜のために撥水性である」との説がありましたが、本当でしょうか。 回答が引用したピカサスという商品の説明の中に、「ピカサスで磨いた後、すすぎ洗いをすると、不動態被膜が再生されて耐食性が再生するとともに、撥水性を示す」とあることを根拠にしているようです。 でもこれは「不動態被膜の撥水性」を示しているのでしょうか。 例えば既に不動態被膜が生成しているステンレスシンクを洗剤で洗ってみると、どう見ても濡れています。 文献(A)は金型用SUS420J2の研磨方法と濡れ性の関係を調べたものです。この中の通常研磨法によるPシリーズの接触角は70度であり、撥水性ではありません。 文献(B)では濡れ性と氷の付着力を調べていますが、SUS304の接触角は40度で、濡れ性の良い表面の代表例とされています。 ビカサスみがき後の撥水性の原因は、不動態被膜そのものの特性ではなく、ピカサスに含まれている何らかの成分にあると考えるべきではないでしょうか。 不動態被膜が撥水性である事例、根拠を御存知でしたら教えて下さい。 「PT浸透液はステンレス鋼の亀裂には浸透しにくいが、亀裂幅が“不動態被膜(=数ナノメートル)”厚以上であれば浸透する」ということを、「もしかしたら」という可能性案ではなく、当たり前の知見のごとく述べる回答が見られる。 浸透探傷試験に関する文献。 「溶接部の浸透探傷試験方法」 https://www.jstage.jst.go.jp/article/jjws/80/8/80_709/_pdf 第9項に検出限界。 よく読んで勉強して下さい。 回答(2)追記「(SUSをPTすると浸透液が浸透しないことがあり、)特にSUSの“不動態被膜”は(その原因となっているので)厄介なものだと認識しています」 SUSもPTも大量に頻繁に使用されているのだから、これが正しいとすると、多くの人が気付いて何らかの記述があるはず。 PTを説明する文献(いずれもJ-STAGEで全文入手可能)を確認してみた。 「溶接部の浸透探傷試験方法」 「圧力容器溶接部の欠陥と探傷方法」 「特殊材料使用化学装置の事故防止のための設計工作の問題点と検査」 「ステンレス鋼建築構造物の溶接施工」 「圧力容器の試験・検査(その2)」 いずれにもSUSについて、そのような指摘は全くない。PTの資格試験にもないはず。 つまり回答者の「認識」とは、ただの誤解、思い違い、早とちりであって、正しい調査考察結果ではない。もし本当ならば当の昔に誰かが言い始めていると、なぜ思わないのだろうか。 「仮説を立てること」は重要だか、検証もせずに判ったように言うのは、専門家はすぐ見抜けるが、初心者・若手には迷惑以外のなにものでもない。 ついでにもう一つ。 「SUSのPTに格段の問題があるわけではないが、SUS以外の鋼はもっとPTがやり易いため、相対的にSUSは問題」という仮説を言い出しかねないので。 ステンレス鋼と他の鉄鋼の濡れ性の比較した文献。 「金型材料の濡れ性制御を目的とした表面改質加工面の創生」 https://www.jstage.jst.go.jp/article/seikeikakou/22/5/22_5_237/_pdf SKH51とSUS420J2の濡れ性比較。 「AFMによる各種材料表面のミクロな水滴観察及び濡れ性評価」 https://www.jstage.jst.go.jp/article/kikaia1979/69/687/69_687_1657/_pdf 純鉄とSUS304の濡れ性比較。 濡れ性がどう違うか、よく勉強して下さい。 ピカサス説明 文献(A)SUS420J2表面の濡れ性 文献(B)撥水性表面の氷の付着力 http://www.astrong.co.jp/astrong/index.php?data=./data/cl63/ https://www.jstage.jst.go.jp/article/jsat/54/6/54_6_373/_pdf https://www.jstage.jst.go.jp/article/sfj1989/47/2/47_2_189/_pdf