• 締切済み
  • すぐに回答を!

大至急お願いします。

二次関数y=X2+2X+3(-2≦X≦1)の最大値と最小値を求めなさい。 (1)y=X2+2X+3をy=a(X-P)2+qの形に変形しなさい。 (2)(1)で変形した2次関数のグラフの頂点を求めなさい。    頂点(□,□) (3) X=-2の時y=□    X=1の時 y=□    y=軸との交点 (0,□) (4) -2≦X≦1の範囲でグラフを書きなさい。 (5)グラフから   X=□の時 最大値□   X=□の時 最小値□  □を教えて下さい。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.2
  • asuncion
  • ベストアンサー率33% (1948/5849)

(1)の平方完成ができたら何とかなるような気がします。というわけで、 x^2 + 2x + 3 = x^2 + 2x + 1 + 2 = (x + 1)^2 + 2 できた。 問題の指示に従うと、a = 1, p = -1, q = 2となる。 (2)前問で求めたpとqが、そのまま頂点となる。 頂点の座標は(-1, 2) (3)ここは単に代入するだけ。 x = -2のとき、y = (-2 + 1)^2 + 2 = 3 x = 1のとき、y = (1 + 1)^2 + 2 = 6 >y=軸との交点 (0,□) =っていうのがよぶんな気がする。 y軸との交点はx = 0のときだから、y = 3より、(0, 3) (4)は添付図参照。点線で示した -2 ≦ x ≦ 1が定義域。 (5)グラフから、x = 1のとき、最大値6、x = -1のとき、最小値2

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 二次関数

    A.次の二次関数をy=a(x-p)^2+qの形(標準形)に変形し、頂点の座標とy軸との交点の座標を求めてください。 (1)y=x^2-6x+11 (2)y=x^2+2x-4 (3)y=2x^2+8x+5 (4)y=-x^2+2x+1 B.次の関数の最大値、最小値を求めてください。最大値、最小値がない場合は「なし」と書いてください。最大値、最小値をとるときのxの値も書いてください。 (1)y=x^2-6x+5 (2)y=-x^2-4x+2 C. (1)二次関数y=(x-2)^2-3の頂点の座標とy軸との交点の座標を求めてください。 (2)1≦x≦4における二次関数y=(x-2)^2-3の最大値、最小値を求めてください。 (1)端点のy座標の計算をしてください。 (x=1のとき) (x=4のとき) (2)最大値、最小値を求めてください。 (最大値)〇〇のとき 最大値 (最小値)〇〇のとき 最小値

  • 2次関数の最大・最小

    2次関数の最大・最小 aが実数として、a<=x<=a+2で定義される関数f(x)=x^2-2x+3がある。この関数の最大値、最小値をそれぞれM(a),m(a)とするとき、関数b=M(a),b=m(a)のグラフをab平面に(別々に)書け。 最大・最小となる候補を利用 y=d(x-p)^2+qのグラフが下に凸の場合、 ・区間α<=x<=βにおける最小値は、x=pが区間内であれば、頂点のy座標q そうでなければ、区間の端点でのf(α),f(β)のうち小さいほう ・区間α<=x<=βにおける最大値は、区間の端点での値f(α),f(β)のうちの大きいほう である。結局、「最大値や最小値にbなる可能性のある点は、頂点と両端の点の3つのみ」であるから、 「頂点のy座標(頂点が区間内にあるとき)、および区間の端点のy座標からなる3つのグラフを描いておき、最も高いところをたどったものが最大値のグラフ、最も低いものをたどったものが最小値のグラフである。 教えてほしいところ 「最大値や最小値にbなる可能性のある点は、頂点と両端の点の3つのみ」であるのは理解できます。しかし、 「頂点のy座標(頂点が区間内にあるとき)、および区間の端点のy座標からなる3つのグラフを描いておき、最も高いところをたどったものが最大値のグラフ、最も低いものをたどったものが最小値のグラフである。という部分が理解できません。 何故、たどったものがそれぞれ最大値または最小値のグラフだといえるんですか?? 論理的に教えてください

  • 二次関数グラフの平行移動

    数学から遠ざかり早10年ですが 参考書片手に勉強している者です。 試験の問題だったため答えは分かりませんが 手法のほど導いてくれませんか? --------------------------------------------- 2次関数 y=2(x-1)(x+p) (ただしp>0) について このグラフが y=2x~2のグラフをy軸方向については -8だけ平行移動したものであるとき、 pの値を求め、またx軸方向についてはどれだけ 平行移動したものかを答えなさい。 --------------------------------------------- 今私が分かるのは下の3つの公式です。 y=ax~2+bx+c  …通る3点が分かる場合 y=a(x-α)(x-β) …x軸との交点が(α,0)(β,0) y=a(x-p)~2+q …頂点が(p,q)、軸がx=p 答えについては グラフの形と頂点(x,-8)という想像ができます。 どうぞ宜しくお願いいたします。

  • 三角関数の最大最小についての問題

    関数の最大値と最小値、およびそのときのθの値を求めよ。ただし0≦θ<2πとする。 y=2tan^2θ+4tanθ+5 自分の解答) tanθ=xとおくと、範囲は-1≦x≦1。 y=2x^2+4x+5 y=2(x+1)^2+3 頂点(-1、3) 軸x=-1 よって x=1のとき最大値11 x=-1のとき最小値3 ここでグラフと範囲から最大値・最小値を出したのですが、 答えでは最大値はなしになっていました。 範囲が間違っているのでしょうか、ご指摘宜しくお願いします。

  • 数学の問題の答えをお願いします

    数学の問題の解答と途上式をお願いします。 次の2次関数をy=a(x-p)^2+qの形に変形しなさい。 (1)y=-x^2-2x-1 次の関数のグラフを()内に示したように平行移動したとき、そのグラフをあらわす2次関数を求めなさい (1)y=-x^2 (x軸方向に2) (2)y=x^2 (y軸方向に5) □を埋めてください。 (1)y=2x^2-4 (y=2x^2) x軸方向に□ y軸方向に□ 頂点の座標(□、□) 軸の方程式□

  • 数学の二つ質問があります。大至急です

    一つ目 平行移動の質問です y=x^2をx軸方向にp、y軸方向にq平行移動する。 このときのグラフの方程式を求めたいです。 y=x^2上の点を(X,Y)とおくと移動後の点を(α、β)とおくと α=X+p β=Y+q Y=X^2 なので β-q=(αーp)^2 よって y-q=(x-p)^2 となるとは思ったのですが疑問があります 最後のY=X^2までは原点が頂点の二次関数のグラフのはずなのですが、 最後にY,Xに代入しただけでグラフが変わるのっておかしくないですか? 移動後も移動前も考えている軸はx-y軸のはずで、X-Y軸ではないと思うのですが。 Y=β-q なのでβ-qとYは等しいはずです。 なのにどうして代入した後はグラフが違うのでしょうか? またどうして代入した後のグラフは平行移動した後のグラフというのがわかるのでしょうか?

  • 数I)関数の最小値の出し方教えて下さい。

    (1)(2)ともに、頂点の出し方までは分かるのですが、 (1)は、グラフの意味が分かりません。 グラフを見ると、(1)は、yの4の上に5が書いてあり、5の点を通ってます。 これは、y軸(直線x=0)で計算して5だから5なんでしょうか? (2)は、答えのt=4で最小値2っていうのが分かりません。 どこから2が出てきたのか教えて下さい。 2というのがさっぱり分かりません。 また、こういう問題は、グラフを書いて答えを導くのなら、 ・頂点の座標 ・x軸との交点の座標 ・y軸との交点の座標 この3つが必要なのでしょうか? 関数y=((x^2)-2x+5)^2-6((x^2)-2x+5)+10について。 (1)t=(x^2)-2x+5としたときの、tのとり得る値の範囲を求めよ。 平方完成で、 t=((x^2)-2x+1-1)+5 t=(x-1)^2+4 頂点は、(1,4) 答え t>=4 (2)yの最小値と、そのxの値を求めよ。 y=((x^2)-2x+5)^2-6((x^2)-2x+5)+10 t=((x^2)-2x+1-1)+5より、 y=t^2-6t+10 平方完成で、 y=(t-3)^2+1 頂点は、(3,1) (1)より、t>=4であるから、t=4で最小値2 このとき(1)より、x=1 以上まとめてx=1のとき、最小値2

  • 教えて下さい。

    数学の問題です。 aを定数とし、xの二次関数y=x^2+(2a-2)x-4a+2…(1) のグラフをGとする。Gの頂点の座標は (-a+1,-a^2-2a+1) である。 Gをx軸方向にa,y軸方向にaだけ平行移動したグラフがy=(x-1)^2のグラフと一致しているとき、 aの値は -1±√5/2 である。 以下、a=-1+√5/2 とする。 (1)Gの軸は直線 x= 何でしょうか?   また、二次関数(1)の-2≦x≦2における最大値と最小値は? (2)Gとy軸との交点のy座標をYとするとき Y= 何でしょうか?   G軸をy軸方向に-Yだけ平行移動したグラフをG1とするとき、G1の頂点のy座標は何でしょうか?   また、G1とx軸との交点のx座標は何でしょうか? 質問ばかりですみません。 宜しくお願い致します。

  • 数学Iについて

    (1)y=x^+2x+3 (2)y=-x^-6x-4 次の2次関数をy=a(x-p)^+qの形にして、そのグラフも書くこと。 これでいいのか回答お願いします。あと、y軸との交点のy座標は(4、0)と(5、0)ですか? 度々の質問すみません。

  • 解答がない為、解方や正否が判りません・関数,不等式

    とある専門学校の過去門をやっているのですが、 "解答はありません先生などに聞きましょう" とあり、自分は学校や予備校に通っていないため、聞ける先生が居ません。 そのため、解法や正否が判らないのがいくつかあります。教えていただけませんか? ”A:”は自分なりに解いた結果です ・問題その1 2次不等式x^2-2x-9<0を満たすxのうち、最大の整数を求めよ。 A: x<±√10+1 により、"4" ・問題その2 p,qを定数とする2次関数 y=x^2+px+q ・・・・(1) がある。(1)のグラフが点(1,2)を通るとき、以下の設問に答えよ。 (1)qをpの式で表せ。 A: q=1-p (2)(1)の最小値をpの式で表せ。 A: -p/2 , -(p^2-4(1-p)/4) (3)(1)の最小値を最大にするpの値を求めよ A: -2 問題その3 次の方程式・不等式を解け。 (1)3x^2-7x+1>4x^2-6x-5 A: 0>x^2+x-6 → 0>(x+3)(x-2) → -3<x<2 (2)※連立不等式です。 x^2+2x+3<2(2x+3) 4x+7>5(x+1) A :1つめの式はD<0のため解なし 2つめの式によりx<2 (3)x^2+4| x |-5>0 A: x^2+4x-5>0→(x-1)(x+5)>0 x・・・1,-5 : x^2-4x-5>0→(x+1)(x-5)>0 x・・・-1,5 : -5<x<5 問題その4 xの二次関数 y=x^2+px+q・・・(1)のグラフを x軸方向に3、y軸方向に-2だけ平行移動すると、頂点の座標が(1,1)になったという。以下の問いに答えよ。 (1)(1)の頂点の座標を求めよ。 A: 1-(3)=2 1-(-2)=3→(-2,3) (2)p、qの値をそれぞれ求めよ。 A:q=2p-1→y=(x+p/2)-(p^2-4(2p-1)/4) →-p/2=-2 -(p^2-4(2p-1)/4)=+3 →p=4 2p-1=q=7 p=4、q=7 (3)(1)のグラフをy軸について対象移動し、さらに軸にa、y軸方向にbだけ平行移動しても、 頂点の座標が(1,1)になったという。a、bの値をそれぞれ求めよ。 A:(-2,3)→(2,3)→a=-1 b=-2 お願いします。