• 締切済み

2^o(logn)・o(logn)=o(n^1/3

以下ののような式が現在読んでいるものにかかれています。 2^o(logn)・o(logn)=o(n^1/3) このような式がなぜ成立するのかわかりません。元々右辺は求まっていなくて左辺から右辺を導き出すみたいなのですが、どうしてこのようになるのかわかりません。 ご存知のかたや、おそらくこうではないかと思う方は、ご回答のほどよろしくお願いします。

みんなの回答

  • jcpmutura
  • ベストアンサー率84% (311/366)
回答No.1

lim_{n→∞}{o(logn)}/logn=0 となる lognの関数をo(logn)と表す lim_{n→∞}{o(n^{1/3})}/n^{1/3}=0 となる n^{1/3}の関数をo(n^{1/3})と表す n^t=2^{o(logn)} とすると logn^t=log2^{o(logn)} tlogn=(log2)o(logn) t=(log2)o(logn)/logn ↓ 2^{o(logn)}=n^{(log2)o(logn)/logn} 2^{o(logn)}=1/n^{-(log2)o(logn)/logn} ↓ 2^{o(logn)}/n^{1/3}=1/n^{1/3-(log2)o(logn)/logn} ↓ 2^{o(logn)}(logn)/n^{1/3}=(logn)/n^{1/3-(log2)o(logn)/logn} ↓ lim_{n→∞}2^{o(logn)}(logn)/n^{1/3} =lim_{n→∞}(logn)/n^{1/3-(log2)o(logn)/logn} =lim_{n→∞}(logn)/n^{1/3} =lim_{x→∞}x/e^{x/3} =lim_{x→∞}x/(1+x/3+x^2/18) =lim_{x→∞}1/(1+1/3+x/18) =0 ↓ lim_{n→∞}2^{o(logn)}*o(logn)/n^{1/3} lim_{n→∞}[2^{o(logn)}(logn)/n^{1/3}]*{o(logn)/logn} =0 ↓ ∴ 2^{o(logn)}*o(logn)=o(n^{1/3})

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • アルゴリズムの計算量O(n)の証明

    O()ビッグオーダについての証明問題なのですが どうすればよいのかわかりません。どなたか教えていただけませんか? O(n*log n + n) = O(n*log n)を証明せよ f(n) ε O(n) f(n) > 0で、ある定数Cがあり ここでlim n→∞ f(n)/n ≦ C おそらく上を使うと思うのですが式変形を行っても 左辺-右辺で0にできません。ひょっとしたら はさみうち等を使うのでしょうか? よろしくお願いいたします。

  • 計算量のオーダについて

    O(n^2+nlogn) O(n√n+nlogn) O(nlogn+n^2)+O((n^1.67)logn) O(nlogn+n^100)O(n^0.7+logn) この4つの式をそれぞれ簡略化せよという問題なのですが、 考え方がよくわかりません。 どなたかご教授よろしくお願いします。

  • 数学的帰納法について

    1・3+2・4+3・5+・・・+n(n+2)=(1/6)n(n+1)(2n+7) これがすべての自然数nに対して成り立つことを示したいのですが。 (I)まずn=1 は 左辺=1・3=3 右辺=3 となり等式は成立する。 (II)ここで、n=kのとき等式が成り立つと仮定すると  とかいて、はじめのnにn=kを代入しますよね。 その後、模範解答を見ると「(k+1)(k+3)を加えると・・・」 としているのですが (k+1)(K+3)を加えている理由としては、 n=kを成立すると仮定して、n=k+1が成り立つ⇒n=kも当然なりたつ⇒すべての自然数nについて与式は成り立つ。 というものなんでしょうか? ということは、例えば右辺が 2n(n+1)などとしたら、 はじめにn=1で成り立つことを示した後、 n=kを代入し 2k(k+1)を成り立つと仮定し、 n=k+1で 2(k+1){(k+1)+1}・・・☆ となるようにうまく右辺を変形させてあげて、 nのところにk+1が代入されている形になっているので、n=k+1のときに成り立つことが示せて、だからn=kのときも成り立ち、すべての自然数nに対して等式が成立する。 という風に考えればいいのでしょうか? つまり、右辺が☆の形でn=k+1で元の式のnにk+1を代入した形を示せれば、左辺はともかく右辺だけでn=k+1が成り立つことを示せているんですよね? つまり問題に戻ると、左辺は1・3+2・4・・・・+(k+1)(k+3)= とでも適当に書いておいて実質無視ということでしょうか? 理系の受験生なのですが、帰納法すらまともに書けないのか・・・ と馬鹿にされそうですが・・・。 質問というか確認のようになってしまいましたが、帰納法というのはどういうものなのか?という理解すらままならない状況だったので質問させていただきました。あと5ヶ月でまともな解答がかけるようになるために間に合うかはわかりませんが、地道に努力します。回答よろしくおねがいします。

  • 数学的帰納法

    今高校で数学的帰納法をやっているんですが、模範解答を見ても解き方がわからない問題があります。 お力貸してください。 nを自然数とするとき、数学的帰納法によって次の等式を証明せよ。   (n+1)(n+2)(n+3)……(2n)=2のn乗×1×3×5×……×(2n-1)  模範解答・・・ [1]n=1のとき、左辺=1+1=2、右辺=2 より成り立つ。          [2]n=kのとき与式が成り立つと仮定すると、    (k+1)(k+2)(k+3)……(k+k)=2のn乗×1×3×5×……×(2k-1)  ------------------------------------------------------------   ここまでは分かります。以下がわかりません。  この両辺に〔(k+1)+k〕〔(K+1)+(K+1)〕を乗じると、(なんでここでこれを乗じるんですか??) 左辺=(K+1)(K+2)(K+3)…(K+K)〔(K+1)+k〕〔(K+1)+(K+1)〕    (以下こんな感じです) 右辺=・・・・・ k+1≠0より左辺と右辺を(K+1)で割ると、これはn=k+1のときにも与式が成り立つことを示している  [1][2]よりすべての自然数nに対し与式は成り立つ。  途中からがよくわかりません。分かる方いらしたら教えてください。

  • パーセバルの等式(Σ1/n^2)

    こんばんは。 xのフーリエ級数  Σ(n=1,∞)(((-1)^(n+1))/n) を利用して  Σ(n=1,∞)(1/n^2) の値を求める問題をやっています。 パーセバルの等式から  (1/π)∫(-π~π)(x^2)dx = Σ(n=1,∞)(((-1)^(n+1))/n)^2 について  (左辺)   = (1/π)*((π^3)/3+(π^3)/3)   = (2/3)*π^2  (右辺)   = Σ(n=1,∞)(1/n^2) から、  Σ(n=1,∞)(1/n^2) = (2/3)*π^2 と計算したのですが、答えは (π^2)/6 のようです。 何が間違っているのかまったく分からない状態です。分かる方いらっしゃいましたら是非教えてください。 よろしくお願いします。 数式見づらくてごめんなさい。。

  • 素数定理では満足できない

    π(N)≒N/logN この素数定理、今もって、極めて有名・有意義な式らしいですね。 例えばN=100万のとき、左辺は78,498、右辺は72,382・・・だそうです。結構誤差がありますね。 しかし、この素数定理は、Nがとてつもなく大きくなると、極端に言えば無限大だとすると、「≒」が「=」となる、と言っているんでしたよね。すばらしい発見です。 が、裏を返せば、無限大まではいかないけどとてつもなく大きなN、例えば10の1億乗までには何個の素数があるかとなると、やはり上式による限りは近似値しか得られません。 そこで質問ですが、いかなる大きさであろうとも、有限の値Nに対し、近似値ではなく正確な個数π(N)を表す式は発見されていないのでしょうか。

  • マージソートの計算量について-O(n*logn)

    マージソートの計算量はO(n*logn)ですが、なぜそうなのかが理解出来ません。要素数が2, 4, 8, 16, 32, 64...と増加すると二分割するのにかかる時間は1, 2, 3, 4, 5, 6..となり、n=2^x, x=lognとなるところまでは理解出来ました。しかし更にnをかける必要があるのはどうしてでしょうか。要素数が1になるまで分割した後に、小さい順番に比較しながら統合して行く作業があり、これにも当然ランニングタイムがかかるのはわかりますがなぜこの要素の比較コスト?が*nなのでしょうか。 またウェブで調べると、他にもT(n)=2T(2/n)+O(n)という別の説明もあり、こちらも理解出来ません。この説明は上の説明とはまた別の角度から説明しているものなのでしょうか。わかる人がいたら教えて下さい。

  • 数学的帰納法について

    (1+2+・・・+n)^2 = 1^3 + 2^3 + ・・・ + n^3 を数学的帰納法で証明するのですが、 n=1のとき、 1=1で左辺=右辺。 n=kで成り立つとしたとき、  n=k+1のとき、左辺 - (1+2+・・・+k)^2 = k^3 = (k+1)^3 を求めてみようとしたのですが、 式変形がうまくいきません。 どうかご教授願います。

  • (n!)^2≧n^n(nは自然数)

    (n!)^2≧n^n(nは自然数) この不等式の証明なのですが、第1手が分かりません。 両辺対数を取り、移行してnの関数と見て微分に持ち込もうとしたのですが、nが1に近付くと変数として扱えば良いのか定数として扱えば良いのか分からず断念。 そのまま(左辺)/(右辺)の形にして各項の評価も試みましたが、上手く行かず…。 分かる方がいらっしゃいましたら、何かヒントをお願いしたいです。

  • 証明の問題 パート2

    1+1/2^2+1/3^2・・・+1/n^2≦2-(1/n) (nは自然数) 数学的帰納法を用いて証明せよ。 途中まで考えてみました。 〔1〕n=1の時    左辺は1 右辺も1 よって成立 〔2〕n=kの時    1+1/2^2+1/3^2・・+1/k^2≦2-(1/k)で成立するとする。 ここからn=k+1の場合を考えればいいんですよね。なんだか混乱して分からなくなりました。簡単かもしれませんが、教えてください。