集合論の理解を深めるための教材とは?

このQ&Aのポイント
  • 集合論を勉強している人におすすめの教材を紹介します。
  • 濃度や順序の概念について理解を深めるためのアドバイスをします。
  • 集合論の現在の状況や全体像について詳しく教えます。
回答を見る
  • ベストアンサー

ひとつ教科書を読みました。もっと集合論を理解したい

こんにちは! 今、(いずれは哲学の議論に着いて行けたり、活かせたりできたらなという目的で)集合論を勉強しています。 先日『集合への30講』という教科書を読み終わりました。 この本では、素朴集合論の基本的定理に証明を与えたり、濃度と順序の考え方、またその接点などが論じられていました。 読んだ感想としては、「順序って結構難しいなあ」という印象を受けました。 新しい教材と共に、集合論の理解をもっと深めたい、また公理論的集合論の理解ができるようになりたいと思っているのですが、何かお薦めの教材はありませんか? 正直上述の教科書で勉強して、「いま勉強している知識はいったいどこへ向かっているのだろう…?」と思いました、集合論や、またその全体像に対してもより知識を深めていきたいです。 さらに、質問の本筋とは少しずれるのですが… 私が今戸惑っていることは、 (1)濃度の概念や順序の概念についてある程度の理解は得られたが、いったいなぜそれらの概念は必要とされたのか (2)今、集合論はどのような段階にあるのか などがわからなかったことです。 もしよろしければ、お時間がございましたら、この場ででも教えてもらえないでしょうか? アドバイスをたくさん頂けると本当にありがたいです!(まわりに相談できる方がいらっしゃらないので…) お願いします!

質問者が選んだベストアンサー

  • ベストアンサー
  • kgrjy
  • ベストアンサー率54% (1359/2481)
回答No.1

> 「いま勉強している知識はいったいどこへ向かっているのだろう…?」と思いました 本格的学問からしてちょっと外道ですが、三浦俊彦著作(二見書房刊)論理パラドックスほか4冊をよまれましたか?他の出版社からも類似作あり(ただし同名同世代の経済学者がいるので混同に注意)。 現在論理学、倫理学、哲学をゲーム感覚で概観する好著だと思います。

関連するQ&A

  • 集合論 おすすめの教科書を教えてください

    こんにちは。 独学で数学基礎論への関心から、数学を勉強しております。 赤攝也『集合論入門』(1957)を読み終わりました。 これを読んだ私の手ごたえは、言われていることはだいたいわかるが用いられている証明などはまったく無理解、といった感じです。もう一度緻密に証明を追っていこうかと思っております。 と同時に、ここで教科書を変えてもよいのかなという気がしております。 この本の証明を追えば、濃度や順序数に対する理解が深まる期待は持てるかもしれませんが、あえて不満を挙げるとすれば、なぜ濃度や順序数といった集合論の概念が用いられるようになったのかが見えてこないというところです。 数学基礎論を学びたい私にとっては、この不明瞭さは痛手です。 次は証明などはしっかりと私自身ノートをとって理解することに努めたいのですが、そんな私にお勧めの教科書がございましたら、教えていただけませんか? お願いします!

  • "領域"と"素朴集合論の集合"は同じ概念?

    最近,公理的集合論を勉強しております。 高校の時から今まで何気なく使用していた集合では矛盾が生じてしまうので公理的集合論の集合が考え出されたのですね。 ところで "領域"と"素朴集合論の集合"は同じ概念と解釈していいのでしょうか?

  • 集合論についての質問です

    集合論には大きく分けて素朴集合論と公理的集合論があることを知りました。 今大学生なのですが、工学部なのでそこまで詳しい解説は4年生になっても多分しません。 なので、数理学科が学ぶようなとても厳密なお話にはついていけないと思いますので、簡単に教えていただければと思います。 公理的集合論での「公理」とは、「これこれこういう集まりじゃなきゃいけませんよ」というような、集合とはどのようなものかを定義するものということでいいのでしょうか? いいかえるならば、素朴集合論において、パラドックスが発生したときに用いていた集合を排除するための規則ということでいいのでしょうか? 公理的集合論とは、素朴集合論においてパラドックスが発生してしまうような集合をとりのぞくいろいろな規則を導入して、パラドックスが発生しないようにした集合論ということですね。 また、高校や大学で集合を扱う時は、集合の定義で「ある条件に当てはまるか当てはまらないかが明確に決まるものの集まりとする」として、たとえば、「背の大きなクラスメートの集まりは集合とはしない」と説明されましたが、この時の背の大きなクラスメートの集まりが集合としないのは公理的集合論の理論を用いているのでしょうか? それともそれ以前の大前提のことをただ単に明示しているだけで、素朴、公理的、を語る以前のことという捉え方でいいのでしょうか? 全体的に分かりにくい文章で申し訳ありません。 よろしければ回答お願いいたします。

  • 集合は有限集合と無限集合だけですか?

    有限集合の元の数を考えるとき、 「いかなる有限集合よりも元の数が多い有限集合は存在しない」------(A) ことがわかります。一番大きな基数の有限集合が存在しないと言い換えても良いですね。 ところがここに無限集合の概念を導入すると 「いかなる基数の有限集合よりも大きい集合として無限集合がある」---(A’) ここで「大きい」とは二つの集合の元を対応させて行くと、「大きい」方の元が余ることを言います。 ここでは、“超有限集合”=無限集合という関係が成り立ちます。 さて、公理的集合論の公理により、無限集合Rから常にPower(R)が作れるので、 「いかなる無限集合よりも濃度の数が多い無限集合は存在しない」------(B) が成立しました。 一番大きな濃度の無限集合が存在しないと言い換えても良いですね。 ここで、有限、無限に続く第三の概念として、“超無限集合”=寿限無集合(仮名)という概念を導入します。 すると、(A)に対して(A’)が成り立ったように、(B)に対して(B’)が成り立ちます。 「いかなる濃度の無限集合よりも大きい集合として寿限無集合がある」---(B’) 質問1:このような寿限無集合はZFC公理系で無矛盾に定義できますか? 質問2:集合の種類は有限と無限の二種類でしたが、第三の概念を導入すると、無限集合では成り立たないが寿限無集合の世界だけで成り立つ定理も発見できると思うのですが、このような概念の拡張をした数学者はいましたか? 質問3:有限と無限以外に第三の概念を導入することが無意味であると立証できますか?

  • 区体論

    http://hp.vector.co.jp/authors/VA011700/math/welc.htm 区体論は集合論の代替になるものと期待していますが、 実は、集合論から区体論を構成できると思いました。 (公理9は開区間(a,b)の集合全体を考えれば、いいと思います。) それでも、区体論の価値はあると思います。 それはまさしく、余計なことをできなくすることです。 余計なことの一例は、べき集合をどんどん構成していき、どこまでも高い濃度の集合を作ることなどです。 そうすることで、扱う対象を明確にできると考えます。 ところで現実問題として、連続濃度以上が必要になる具体的な問題があるのでしょうか?

  • 素朴集合論における対応について

    当方現在素朴集合論を勉強している学生です。 素朴集合論を松坂さんの『集合位相論』で学んでいるのですが、対応の概念でわからないことが発生しました。 対応Γというのは、集合Aの任意の要素に対して、Bの部分集合を定めるような規則のことと理解しています。 ここで一つ目の疑問は、Γ(a)という集合を内包的記述でどう表すかということです。 また、食い違いがないように説明しておくと 内包的記述において、僕は以下のように理解しています。 {x|P(x)} はP(x)が真となるようなすべてのxを要素ともつ集合。 それからもう一つの疑問は p24の最後にあるように b∈Γ(a)という記述があるのですが、Γ(a)というのはあるBの部分集合です。 しかしbはBの要素として定義されています。 これは必ずしも両立しえない気がします。 ここもおかしいと思うのです。 うまく質問の意図を伝えられたかどうかはわかりませんが、 どうかお答えお願いします。

  • 数学基礎論についての問いです。

    1.選択公理=整列原理=濃度三分法則 が成り立つこと、 2.そして、1.が集合論では証明できないこと、 を証明した文献をお教え下さい。

  • 計算論と集合論における関数について

     再質問になっています、ご容赦ください  いわゆる計算論において、関数は有限回の帰納的な操作によって記号を別の記号に書き換えること(「n」に「‘」を書き足し「n’」にするなどして)を記号間の関係として定義したモノだと考えています。  そして、集合においても順序対として関数は導入されると思うのですが、 集合論の言葉では関数というのはある性質を持った、対応付けが存在するという風に書かれていると感じます。  この「存在する」という書き方の関数の定義で、上の定義と同様に有限回の操作で、ある対象に対応づけられた対象を特定できるのでしょうか、つまり実際に対応物をどうやって見つけてくるのかを教えてくれないのではないかといったことは問題として発生しないのでしょうか。  もちろん、論理的に問題なければ(人間の意味のレベルで)実際特定可能かどうかは本質的な問題ではないと思うのですが(非可述的定義も許されているわけですし)。  ただ、計算論ではそのような関数は出てこない、帰納的関数を主として扱うようなので、集合論における関数と何か相違点(そういった関数を扱わない理由)があるのだろうかと感じていまして、また逆に集合論では計算論で扱えないような関数も扱っているのだろうかとも思うのです・・・。 そしてもし本当に集合論で扱っている関数がもっと広いものであるならそれはどういうように扱われるのでしょうか(どのようにって集合論側の構文規則に則って扱われるのでしょうが、それで問題などは発生してこないのでしょうか)。  以上の質問で、かなり勘違い、無理解の類が混じっていると思い不安なのですが、もしお時間に余裕ありましたらよろしくお願いします。

  • コルモゴロフ以外の確率論とは

    数学の"確率論"に興味を持っています。将来的にこれを専攻しようと考え、今はコルモゴロフ「確率論の基礎概念」に書かれている"公理主義的確率論"を勉強しています。ただ、これ以外にも別の確率論があると聞きました。 なぜ色々な提案がなされているのでしょうか?Kolmogorov流のやり方で不十分なことがあるのでしょうか? 他の有力な提案について、参考になる本(多少専門的でもかまいません)も含め教えてください。

  • 和集合と濃度の関係について

    こんにちは。 集合論の本を読んでいて、わからないところがあります。お力をお貸しください。 わからないところは、ベキ集合のベキを無限にとることによって、無限濃度の可算増加列が得られるが、その可算列の先のさらに大きな濃度の集合Mをとることができるというところです。 自然数の集合Nのベキ集合をB^1(N)とし、そのベキ集合のベキ集合をB^2(N)とすれば、上述の無限濃度の増加列が、「|N|<|B^1(N)|<|B^2(N)|<…<|B^n(N)|<…」として得られます。 このとき、M=⋃(n=1から∞)B^n(N)とおけば、「|B^n(N)|<|M|」が導かれるというのです。 私の疑問は、「n=1から∞」までのB^n(N)の和集合の濃度が、本当に|B^n(N)|を超えるのか?というところです。 といいますのも、アレフにアレフゼロを足してもアレフのままであるように、和集合が単純にB^n(N)より大きくなるとは言えないんじゃないか?と思うからです。 この論理の根拠は(すなわち和集合と濃度の関係についての上述の論証の根拠は)どのようなものなのでしょうか? アドバイスお願いします。