• 締切済み
  • 困ってます

公務員の数的処理の問題でわからないので教えてくださ

図のように半径9の円Oに△ABCが内接している。点Cをとおる接線と、ABの延長線との交点をPとすると、∠APC40゜となる。弧ACの長さを8πとするとき、弧ABの長さは

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数201
  • ありがとう数9

みんなの回答

  • 回答No.2
  • yyssaa
  • ベストアンサー率50% (747/1465)

>弧ACの長さを8πだから 8π=(∠AOC/2π)*2π*9より∠AOC=8π/9 円周角は中心角の1/2だから∠ABC=∠AOC/2=4π/9=80° 接弦定理により∠BAC=∠BCP=x°、∠ACB=y°とおくと △APCについて三角形の内角の和=180°より 2x+y+40=180、△ABCについて三角形の内角の和=180°より x+y+∠ABC=x+y+80=180。連立で解いてyを求めるとy=60° ∠AOB=2*∠ACB=2*60=120°=2π/3 よって弦ABの長さ=2π*9*(2π/3)/2π=6π・・・答

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数学を教えてください

    △ABCはAB=5,AC=4で、ABを直径とする円に内接している。この円の点Cにおける接線とABの延長線との交点をPとするとき、線分CPの長さを求めよ。 PBを求めて方べきでPCをだすのだと思いますがPBの求め方がわかりません。教えてください。

  • 数学の問題です。

    △ABCにおいてAB=AC=3、BC=2とする。 このとき cos∠BAC=7/9、sin ∠BAC=4√2/9である。 △ABCの外接円の中心をO、半径をRとするとR=9√2/8である。 (1)外接円Oの点Cを含まない弧AB上に点PをAP=PBとなるようにとる。   線分OPと辺ABの交点をHとすると   OHは?   APは? (2)外接円Oの点Bを含まない弧AC上に点QをAQ=QCとなるようにとり、線分BPの延長と線分QAの   延長との交点をSとする。   ∠PBA=θとおく。次の五個の角のうち、その大きさが2θであるものの個数は?個である。   ∠SPA ∠ABC ∠BCA ∠CAP ∠PAS   そして SA=?、SQ=? である。   さらに、点Sから円Oに接線を引き、その接点をTとすると   ST=?   である。 多くてすみません。 宜しくお願い致します。

  • 数学(平面図形) 解説お願いします。

    長さ2Rの線分BCを直径とする半円周上の1点をAとし, 弦AB, ACの中点をそれぞれE, Fとします。 点Eで弦ABに接し、かつ弧ABに接する円の半径をαとし、 点Fで弦ACに接し、かつ弧ACに接する円の半径をβとします。 △ABCの内接円の半径を r として、次の等式を証明しなさい。 (1) 2(α+β)=R-r (2) 8αβ=r^2

  • 回答No.1
  • info222_
  • ベストアンサー率61% (1053/1706)

∠AOC=弧AC/半径=8π/9=160° ∠ABC=∠AOC/2=4π/9=80° ∠BCP=∠ABC-∠BCP=80°-40°=40° ∠AOB=2∠ACB =2{(∠ACP-∠BCP) =2∠CBP-2*40° (∵△CPA∽△BPC) =2(180°-∠ABC)-80° =2(180°-80°)-80°=120°=2π/3 弧AB=∠AOB*半径=(2π/3)*9=6π ... (答)

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 高校数学です。どなたか教えて下さい!!

    三角形の内接円に関する問題です。 △ABCでAB=4 BC=6 AC=5 △ABCに内接する円の半径は√7/2 ※各々の角度は省かせて頂きます。 内接円の中心をIとする。直線CIと辺ABの交点をP 直線BIと辺ACの交点をQ この時にできる△APQの面積は△ABCの面積の何倍になるんでしょうか。 いまいち答えがはっきりしなくて悩んでます。 内接円との接線であれば、答えが出るんですが、これはよくわかりません。

  • おうぎ形の内接円て・・・

    平面上に3点A,B,CがありAB=BC=CA=1である。点Bを中心に半径1の弧ACをかく、このとき線分BC,弧CA、線分ABに内接する円の半径を求めよという問題でおうぎ形の内接円の半径の求め方ってありますか? またさらに点Cを中心に半径1の弧ABをかく。 このとき線分BC、弧CA、弧ABに内接する円の半径を求める問題、そして点Aを中心に半径1の弧BCをかいてこのとき弧BC,弧CA,弧ABに接する内接円の半径はどうやって求めればいいでしょうか?できれば詳しく教えていただけるとありがたいです

  • 図形の問題が分かりません。

    円があります。円周上に3点A、B、Cがあります。その点を頂点とする△ABCがあり、辺BCは円の直径、AB=ACです。BCを延長して、その延長線上に点Dを取ります。点Dと点Aを結ぶ線を引き、円との交点をEとします。AE=EDとします。AB =6のとき、ADの長さを求めなさいという問題です。 図が汚くてすみません。テストがあるので、よろしくお願いいたします。

  • 数学

    円に内接する△ABCにおいて、AB=10,BC=6,∠B=120°とする。 また,弧AC上に点Pをとる。   四角形ABCPの面積の最大値を求めよ。 この問題が分かりません。 AC=14,円の半径=14√3/3まで求めることができました。

  • 相似と合同

    ふたつ質問があります。どちらもあと一つ条件が見つけられません。よければ探す過程を教えてください。 (1)△abcの頂点aから辺bcにひいた垂線をadとする。adを直径とする円oと辺ab・acとの交点をそれぞれe・fとし、adとefの交点をgとするする時。→△afeと△abcの相似条件で分かったのは∠a(共通)です (2)円oに内接する二等辺三角形abc(ab=ac)があり、直線mnは点cで円oの接線である。また点bを通るmnに平行な直線が、acと円oに交わる点をそれぞれd・eとしaとe、cとeを結ぶ。→△abdと△aceの合同条件で、分かったのは、ab=acと∠abe=ace(弧aeの円周角)です

  • 根号の問題

    二等辺三角形ABC(AB=AC)の辺BAの延長線と点Dで接し、辺BCの延長線と点Eで接し、辺ACと接る円Oがあります。 AB=AC=2√2, BC=2√3-2、∠ABC=75°、円Oの半径を√3+1 とします。 これについて次の問いに答えなさい。 (1)∠DAOの大きさを求めなさい。 (2) △ABOの面積を求めなさい。 (3)線分BEの長さを求めなさい。 (1)はわかりました。 (2)、(3)の解き方を教えて下さい。

  • 傍接円と傍心(かな?)の問題が分かりません(TヘT)

    お初の投稿です。数学の問題で分からない問題が出てきて困ってます。 どなたか分かる人教えてください。 説明が不十分な点はそれを述べてもらうとありがたいです。 説明も添えてくださると幸いです。 [図]   △ /○\ [補足の図]  A  △ B C   B P/ C  \Q [図の説明] ・上の △の△ABC と ○の円O は接している。 ・ABの延長が/、ACの延長が\。さらに延長線はそれぞれ接線(交点はP,Q)です。 [問題] AB=c,BC=a,CA=bとしたときの線分APの長さをa,b,cを用いて表す。 [自分が分かった事?] ・OP⊥AP,OQ⊥AQ [分からない事?] ・この円Oが傍接円かどうか

  • 円と直線の問題が分からないので教えてください。

    円に内接する三角形ABCがある。∠Aの二等分線と円との交点をDとする。次に、Dにおいて円に接線を引き、ABの延長との交点をEとするとき、BC//EDを示してください。

  • 三角比

    半径3の円に内接する三角形ABCがあり、AB=5,AC=2とする。 このとき辺BCの長さを求める問題 コンパスで作図する方法はわかったのですが、点Aから直線BCに垂線を下ろし、その交点をIとする図がよくわかりません。 コンパスで作図する図と違うのですが、この図はどのような考えて表されているのですか? それから、なぜLBは鋭角といえるのでしょうか? 図をみればそれはわかるのですが、理論上どのように求めるかわかりません。 AC>5はなぜ純角といえるのですか? そして、なぜ直角だと純角といえるのですか? おしえてください。

  • 弧の中点

    △ABCの外接円の弧BCと点Pで、2辺AB,ACと点D,Eで接する円をえがくと、直線DEは△ABCの内心を通る。このことを証明する途中で、弧ABの中点を求めるのですが、なぜ中点になるかが、わかりません。 略解では、Pにおける共通接線をPTとし、PDがふたたび△ABCの外接円と交わる点をMとし、点Mにおける接線をMSとすると、∠SMP=∠TPM=∠TPD=∠BDP つまりMS//AB ここからがわからないところです。よって点Mは弧ABの中点で、MCは∠ACBを二等分する。・・・自分でインターネットを使って調べたところ、接する2つの円の相似の中心は接点であると、円O上に点A,B,Pがあり。別の円O'が線分ABと点Qで接し、円Oと点Pで接するとき、PQと弧ABの交点Mは弧ABの中点になっている。という定理を見かけましたが、円O'の中心O'、円Oの中心Oとして、QO'とMOの平行から、直線OMはABに垂直になることがわかりません。垂直ならば、点Mは弧ABの中点というのはわかります。平行から弧ABの中点を導く点は、似ていると思うのですが、これら以外の方法でもいいので、MS//ABよって点Mは弧ABの中点を教えてください。お願いします。

専門家に質問してみよう