• ベストアンサー
  • 困ってます

高校数学です。どなたか教えて下さい!!

三角形の内接円に関する問題です。 △ABCでAB=4 BC=6 AC=5 △ABCに内接する円の半径は√7/2 ※各々の角度は省かせて頂きます。 内接円の中心をIとする。直線CIと辺ABの交点をP 直線BIと辺ACの交点をQ この時にできる△APQの面積は△ABCの面積の何倍になるんでしょうか。 いまいち答えがはっきりしなくて悩んでます。 内接円との接線であれば、答えが出るんですが、これはよくわかりません。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数214
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • j-mayol
  • ベストアンサー率44% (240/539)

2/11倍 三角形の内接円の中心は内角の二等分線の交点である。 したがってAP:PB=5:6 CQ:QA=3:2 (三角形の内角の二等分線は対辺を角を挟む二辺の比に内分する。 したがって△APC=5/11△ABC △APQ=2/5△APC=2/5*5/11△ABC=2/11△ABC

共感・感謝の気持ちを伝えよう!

質問者からのお礼

解説ありがとうごさいます。概ね理解できます。ただ、私は比がすごく苦手で、△APC=5/11△ABCの5/11がどんな理由でそうなるのかわかりません。 初歩的なことですいませんが教えて下さい。 また、三角形の内角の二等分線は対辺を挟む~の定義等は高校の教科書に載っているんでしょうか。それとも参考書でしょうか。

関連するQ&A

  • 数学の問題

    三角形ABCにおいてAB=4、BC=6、CA=5とする cosAは(    )である sinAは(   )である 三角形の面積は、(   )である。 これより、三角形の内接円の半径Rとすると、R=(   )である。 内接円と辺ABとの接点DとするとAD=(   )である。 同様に内接円と辺ACとの交点をEとする。 △ADEと面積は、△ABCの面積の(    )倍である。 内接円の中心をOとする。直線COと辺ABとの交点をP、直線BOと辺ACとの交点をQとすると、 △APQの面積は、△ABCの面積の(    )倍である。 この問題の穴に入る答えをわかりやすく教えて下さい。 できれば、計算の過程のお願いします

  • 数学を教えてください

    AB=6,BC=5.CA=4であるとき△ABCにおいて∠Aの二等分線と辺BCの交点をPとしたとき線分BPと線分APの長さを求めなさい。  答えBP=3、AP=3√2 この問題の途中式を教えてください。ちなみにcos∠B=3/4、△ABCの面積S=15√7/4、△ABCの内接円の半径r=√7/2です

  • 三角形と内接円の問題

    △ABCとその内接円があり、内接円と辺BC、CA、ABとの接点をそれぞれD、E、Fとする。 (1)AF=x、BD=y、CE=zとする。△ABCの面積Sと内接円の半径rをx、y、zで表せ (2)Iを内接円の中心とする。  P=(AB・BC・CA)/(AI・BI・CI)の最小値を求めよ。 x、y、zを正の数とすると不等式 (x+y+z)/3 ≧ xyzの三乗根 が成り立つことは用いてよい。 という問題に取り組んでいます。 (1)はヘロンの公式を利用して、 S=√(xyz)(x+y+z)、r=√(xyz)/(x+y+z) と一応なりました。 (2)なのですがAI、BI、CIなどをそれぞれ三平方の定理をもちいて出して代入してみると複雑でうまく計算できませんでした。何かいい方法はありませんでしょうか 回答いただけるとありがたいです。 宜しくお願いします

その他の回答 (1)

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

内心は各角の 2等分線の交点.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうごさいます。

関連するQ&A

  • 【ベクトルと平面図形】

    AB=9、BC=8、CA=7である△ABCの内接円の 辺BC,CA,ABでの接点をそれぞれD,E,Fとし、内接円の中心をIとする。 (1)四角形AFIE、BDIF、CEIDの面積比は? (2)△ABCの面積は? (3)内接円の半径は? (4)AI→をAB→、AC→で表せ。 問題数が多いのですが… 解ける方いらっしゃいませんか?

  • 三角形と内接円・内心

    三角形ABCにおいて、AB=7、BC=3である。この三角形の内心をIとする。AIの延長と辺BCとの交点をDとし、BIの延長と辺ACとの交点をEとする。4点C,E,I,Dは同一円周上にある。 1)角BCAの大きさ及び、線分CAの長さを求めよ。 2)BDの長さ及び、BI*BEの値を求めよ。 3)三角形ABCの内接円の半径を求めよ。 以上が問題です。三辺や二辺+一角が与えられた内接円関連の問題は解いたことがあるのですが、条件が二辺ではどのようにしたらよろしいでしょうか?

  • ベクトル

    △ABCにおいて、AB=2、BC=4、CA=3である。AB↑=a↑、AC↑=b↑とおく (1)∠Aの2等分線と辺BCの交点をDとするとき、AD↑をa↑、b↑で表しなさい (2)△ABCの内接円の中心をOとするとき、A0↑をa↑、b↑で表しなさい (1)はわかったのですが、(2)がわかりません。どなたか教えてください

  • 解決頼みます。 賢い方

    三角形ABCにおいて、AB=4、BC=2、CA=3 とする。そして、点Dは三角形ABCの外接円の点Bを含まない弧CA上に、AD:DC=5:8であるようにとる。2直線AD、BCの交点をEとする。このとき、三角形ABEの内接円の中心をI、2直線AC、BDの交点をFとするとき、三角形EIFの面積は??

  • 三角形の内接円の作図法と証明について

    三角形の内接円の作図法と証明について添削おねがいします 問 三角形の内接円を描くこと 【作図法】 三角形の内接円を描く。 三角形を△ABCとする。 ∠Bと∠Cの二等分線の交点を点Iとする。 点Iから辺BCに垂線を下ろし、辺BCとの交点を点Dとする。 辺IDを半径とし、点Iを中心点とした円Iは△ABCに内接する。 【命題】円Iは△ABCに内接する。 【証明】 (1) 点Iから三辺AB,BC,CAに垂線を下ろしたとき、交点をそれぞれ点E,D,Fとする。 (2) 角の二等分線上の点は、角の二辺から等距離にあるので、 IE=ID,ID=IF よって、IE=ID=IFとなる。 以上より点Iは3点D,E,Fから等距離にある。 よって、円Iは△ABCのの三辺に接しているので内接円となる。 ------------------------------------------ 先生から ・【証明】の(2)では簡単すぎる。三角形の合同を使うこと ・【証明】の「点Iは3点D,E,Fから等距離」という文章で、等距離ならば内接円と言えるのか という指摘を受けました。 誰か訂正等お願いします。指摘箇所以外にもおかしいところがあれば、教えていただけると助かります。

  • 内接円の面積 等比級数

    内接円の面積 等比級数 閲覧ありがとうございます。 手詰まりしてしまったので質問させていただきます。 一辺の長さが1の正三角形ABCの内接円をO1とし、O1に外接し、辺AB、ACに接する円をO2、O2に外接し、辺AB、ACに接する円をO3とする。 以下同様にして、円O1、O2、O3、…、On、…を作る時、円の面積の総和を求めよ。 (画像があります) ヘロンの公式を使い、O1の半径(√3/6)、O1の面積(π/12) までわかりましだが、 O2以下をどうすればよいのか、 どのような等比級数となるのがわかりません。 解説よろしくお願いします。

  • 【数学A・平面図形】

    「△ABCにおいて、AB=6、BC=7、CA=7である。この三角形に内接する円があり、辺ABと内接円との接点をMとするとき、線分AMの長さを求めよ。」です。 よろしくお願いします。

  • 大至急 三角比・三角関数の問題

    大至急 三角比・三角関数の問題 学校のテキストで分からない問題があります もしよければ途中式を教えてください 1△ABCにおいて、AB=6 BC=7 CA=8とし、∠BACの2等分線が辺BCと交わる点をDとする。 (1)cos∠ABCの値を求めよ (2)△ABCの外接円の半径および△ABCの面積を求めよ (3)線分BD、CD、ADの長さを求めよ (4)△ABD,△ACDの内接円の半径をそれぞれr1、r2とするとき、その比を求めよ 2半径1の円に内接し、∠A=60°である△ABCについて (1)BCの長さを求めよ (2)3辺の長さの和AB+BC+CAの最大値を求めよ 3鋭角三角形ABCにおいて、AB=5、AC=4で、△ABCの面積が8である (1)sinA,cosAの値を求めよ (2)△ABCの外接円の半径を求めよ (3)△ABCの内接円の半径を求めよ 4AB=1、AC=√3、∠A=90°の直角三角形ABCがある。頂点A以外と共有点をもたない直線をlとし、2点BCから直線 lにおろした垂線の足をD、Eとする。 直線lをいろいろとるとき、4角形BCEDの周の長さLの最大値を求めよ よろしくお願いしますm(_ _)m

  • 数学 三角比

    三角形ABCにおいて、頂点Aから直線BCに垂直におろした垂線の長さは1、頂点Bから直線CAに下した垂線の長さは√2、頂点Cから直線ABに下した垂線の長さは2である。このとき、三角形ABCの面積と、内接円の半径、および外接円の半径を求めよ。

  • 数学B平面ベクトルの問題。得意な方お願いします。

    AB=3、BC=2、CA=4である△ABCの内心をIとし、直線AIと辺BCの交点をDとする。また、△ABCの内接円と辺BCとの接点をEとする。ABベクトル=bベクトル、ACベクトル=cベクトルとするとき、AEベクトルをbベクトル、cベクトルで表せ。 よろしくお願いしますm(__)m