• ベストアンサー
  • すぐに回答を!

数学を教えてください

△ABCはAB=5,AC=4で、ABを直径とする円に内接している。この円の点Cにおける接線とABの延長線との交点をPとするとき、線分CPの長さを求めよ。 PBを求めて方べきでPCをだすのだと思いますがPBの求め方がわかりません。教えてください。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数96
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

先ず、∠ACB=は90度ですね。  覚えている、では無く、証明できれば問題を解くヒントになります。 円の中心をDとします。 線DCは円の半径です。直径はABなので、DC=AB/2 ∠DCP=直角ですね。それが接線ですから。 線分DCが解かっていて∠CDP(=∠CDB)も解かっているから、線分CPの長さは… このように考えていると、△ABCと△DCPは相似形であることが… 以上、ご参考でした。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 中学三年数学です

    教えてくださいお願いします 長さが10の線分ABを直径とする半円周上に、線分ACの長さが6となるような点Cをとる。CからABへひいた垂線とABとの交点をDとし、Cにおける円の接線と、BAの延長線との交点をEとする。 (1)CDの長さを求めよ。 (2)∠ABC=a°とするとき、∠CEBをaの式であらわせ。 (3)AEの長さを求めよ。

  • 公務員の数的処理の問題でわからないので教えてくださ

    図のように半径9の円Oに△ABCが内接している。点Cをとおる接線と、ABの延長線との交点をPとすると、∠APC40゜となる。弧ACの長さを8πとするとき、弧ABの長さは

  • 高1数学 平面図形の証明です。

    三角形ABCの内接円の中心をO1、この内接円と辺AB、AC、BCとの接点をそれぞれp1、p2、p3とする。 また、辺ABをBの方向に伸ばした延長線、辺ACをCの方向に伸ばした延長線、および辺BCと接する三角形ABCの傍接円の中心をO2とし、この傍接円と辺ABの延長線、辺ACの延長線、辺BCとの接点をそれぞれq1、q2、q3、とする。 このとき、Bp3+Bq3=Cp3+Cq3であることを示しなさい。 この問題がわかる方、教えてください! 解説が載っていないので困っています。 よろしくお願いしますm(__)m

  • 高校数学です。どなたか教えて下さい!!

    三角形の内接円に関する問題です。 △ABCでAB=4 BC=6 AC=5 △ABCに内接する円の半径は√7/2 ※各々の角度は省かせて頂きます。 内接円の中心をIとする。直線CIと辺ABの交点をP 直線BIと辺ACの交点をQ この時にできる△APQの面積は△ABCの面積の何倍になるんでしょうか。 いまいち答えがはっきりしなくて悩んでます。 内接円との接線であれば、答えが出るんですが、これはよくわかりません。

  • 数学を教えてください。

    円O上の点Aにおける接線l(エル)とする。また、点Aと異なるl(エル)上の点Bから円Oと2点で交わるような直線を引き、その交点をBに近い方からそれぞれC,Dとすると、AB=6、BC=4、AC=3である。 (1)線分BDの長さを求めてください。 (2)ΔABCの外接円上の点Aにおける接線と円Oとの交点のうちAと異なる方をEとする。このとき、ΔEACとΔABCが相似であることを証明してください。また、線分CEの長さを求めてください。 (3) (2)において、直線ACと直線BEの交点をFとする。このとき、ΔBCFとΔCEFの面積比を最も簡単な整数の比で表してください。 解いてみると、 (1)方べきの定理より、DC=xととくと AB(二乗)=BC×BD 6(二乗)=4×(4+x) 36=16+4x 4x=20  x=5 DC+CBより BD=9まではなんとか解けたのですがここから解けないので途中式も含めて教えてもらえませんか?

  • 数学の問題です。

    △ABCにおいてAB=AC=3、BC=2とする。 このとき cos∠BAC=7/9、sin ∠BAC=4√2/9である。 △ABCの外接円の中心をO、半径をRとするとR=9√2/8である。 (1)外接円Oの点Cを含まない弧AB上に点PをAP=PBとなるようにとる。   線分OPと辺ABの交点をHとすると   OHは?   APは? (2)外接円Oの点Bを含まない弧AC上に点QをAQ=QCとなるようにとり、線分BPの延長と線分QAの   延長との交点をSとする。   ∠PBA=θとおく。次の五個の角のうち、その大きさが2θであるものの個数は?個である。   ∠SPA ∠ABC ∠BCA ∠CAP ∠PAS   そして SA=?、SQ=? である。   さらに、点Sから円Oに接線を引き、その接点をTとすると   ST=?   である。 多くてすみません。 宜しくお願い致します。

  • 数学 円と二等分線

    円に内接する△ABCがAC=BCの二等辺3角形ならCはABの垂直二等分線上にあることになりますが、この垂直二等分線が円の直径になる事は何で言えるのですか?又CにおけるABに平行な直線がCにおける円の接線になる理由を教えてください

  • 円と直線の問題が分からないので教えてください。

    円に内接する三角形ABCがある。∠Aの二等分線と円との交点をDとする。次に、Dにおいて円に接線を引き、ABの延長との交点をEとするとき、BC//EDを示してください。

  • 傍接円と傍心(かな?)の問題が分かりません(TヘT)

    お初の投稿です。数学の問題で分からない問題が出てきて困ってます。 どなたか分かる人教えてください。 説明が不十分な点はそれを述べてもらうとありがたいです。 説明も添えてくださると幸いです。 [図]   △ /○\ [補足の図]  A  △ B C   B P/ C  \Q [図の説明] ・上の △の△ABC と ○の円O は接している。 ・ABの延長が/、ACの延長が\。さらに延長線はそれぞれ接線(交点はP,Q)です。 [問題] AB=c,BC=a,CA=bとしたときの線分APの長さをa,b,cを用いて表す。 [自分が分かった事?] ・OP⊥AP,OQ⊥AQ [分からない事?] ・この円Oが傍接円かどうか

  • 高校 数学 円の性質 三角形と比 の問題

    高校 数学 円の性質 三角形と比 の問題 ニ十分ほど考えていますが、以下の二題が全く分かりません。入試とか模試の問題だと思います。わかる方御解答の方よろしくお願いします。 □1 図のようなBA=BCの二等辺三角形ABCと点Cを通り点Bで直線ABに接する円Oがある。また、円Oと辺ACとの交点のうちCでない方の点をDとするとき、AD=4,CD=5である。 (1)辺ABの長さを求めよ。 (2)線分BDの長さを求めよ。また、直線BCと△ADBの外接円O'との交点のうち、Bでない方の点をEとするとき、線分BEの長さを求めよ。 (3)(2)のとき、線分AEの長さを求めよ。また、線分ABと線分DEの交点をFとするとき、△BEFの面積を求めよ。 □2 AB=8、AC=6、角A=90°である直角三角形ABCがある。角ACBの二等分線と、辺ABの交点をP,直線CPと△ABCの外接円の交点のうち点Cでない方の点をQとする。 (1)線分AFの長さを求めよ。 (2)線分CPの長さを求めよ。また、線分PQの長さを求めよ。 (3)△ABCの内心をIとするとき、線分PIの長さを求めよ。また辺BCの中点をM,△AQIの重心をGとするとき、線分GMの長さを求めよ。 一気に質問してすみません。数学はかなり厳しい状況なので、よろしくお願いします。

専門家に質問してみよう