• 締切済み

ゲーデル数と自然数の有限列について

 ピンポイントな質問で申し訳ないのですが、もし答えられる方がいらっしゃればお願いします。  田中一之著「ゲーデルに挑む」の原論文第一節 p29に論理式は自然数の有限列で表されるとあって、その下の脚注8に「この有限列というは自然数の始切片で定義される数論的関数であって数が隙間を空けて並んでいるのではない」とありますが、ただ数が隙間を空けているものとすると、どのようにまずいのでしょうか(扱いにくくなってとても不便ことはわかりますが)。  このあとにゲーデル数を実際導入する際は素数を使って定義していますが、これは「自然数の始切片で定義される数論的関数」となっているのでしょうか(数論的関数なるものがどういうものなのかがよくわかっていないのです)。  またゲーデルが行ったのは、ある種の自然数がある性質をもつかどうか調べることが、体系内である論理式が証明できるかどうかを調べることになるということを、正確に定式化することだと考えているのですが、 前者の自然数の性質がどういった内容をあらわすか、つまりある自然数がどの論理式の証明可能性をあらわしているかは、数学は教えてくれず(解釈自体は体系内で行われることでなく)、人間が解釈を行う必要があるということでしょうか(もちろんゲーデル数の性質と記号変形としての証明の手順の間には対応があるので恣意的に解釈することは全く不可能ですが)。 変な質問になってしまって、恐縮ですが、お詳しい方お時間あればよろしくお願いします。

みんなの回答

  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.1

 ご質問の前半は田中一之著「ゲーデルに挑む」が手元にないので、なんとも。  「数論的関数」は(一般には結構広い意味を持ちますけれども)ゲーデル数に関する議論に出て来るんであれば、自然数上の帰納的関数、というほどの意味であることが大抵だろうと思います。ま、「必ず有限回の演算で答が出る、自然数の組から自然数への関数」ぐらいに思っておけば良いかと。 > ある自然数がどの論理式の証明可能性をあらわしているか  具体的な「ある自然数」が与えられれば、それを全く機械的にかつ一意的に文字列に変換できる。結果が論理式(の列)になっているかどうか(論理式の統語規則に従った文字列かどうか)も機械的に判別でき、そしてもしそれが論理式であれば、「どの論理式か」という問いへの答はその文字列です。さらに、論理式を自然言語の文に変換する(自然言語で読み下す)ことも機械的にできます。  「人間が解釈を行う必要がある」とすれば、それは論理式を読み取って「あーそういうイミね」とナットクする、というところ。これは論理式を充足する何らかのモデルをイメージする、というほどのことであって、形式的証明とは無関係です。ってか、そういう曖昧な所を排除したのが形式主義ですもん。  余談ながら、ゲーデルの議論の要諦は、具体的でない自然数、つまり「ある性質を満たすような自然数の全体」を考えるあたりから。ここでようやく、論理式を自然数に対応付けて論理式の操作を自然数上の関数で表現した(つまり、推論過程のモデルを自然数上で作った)、ということが意味を持って来る訳で、これで(個別の具体的な論理式ではなしに)具体的でない論理式の無限集合を扱えるようになった。これこそが「証明も反証も不可能な論理式は存在するか」という議論を可能にする仕掛けのミソです。

student0201
質問者

お礼

とても遅くなってしまいました、申し訳ありません。 回答ありがとうございます、今回もとても参考になりました。 >機械的にかつ一意的に文字列に変換できる >具体的でない自然数、つまり「ある性質を満たすような自然数の全体」を考える 機械的に動かせる用にしておいてそこからあるまとまった範囲を考えるわけですね。そのようなことができるということ自体がある種、不思議に見えてしまって変なイメージを持ってしまっていたようです。 ただ、機械的に全て話が進むとわかっていても、やはり自然数を自然数として扱う立場と、自然数をなんらかの論理式の文字列として扱う立場では、どこかレベルが違う話なのではないかとこだわりを捨てられないでいる面もあります。つまり実際議論している対象は、動かしているのは自然数であって、それを論理式に見て取るのが人間ではないのかと・・・。 しかしおそらく、これは数学の疑問ではないのですね。 以下、少々関係のずれた疑問点になってしまって申し訳ないのですがもうひとつ伺いたいことがあります。 >必ず有限回の演算で答が出る、自然数の組から自然数への関数 いわゆる計算論において、関数は有限回の帰納的な操作によって記号を別の記号に書き換えること(「n」に「‘」を書き足し「n’」にするなどして)を記号間の関係として定義したモノだと思っていました。 そして、集合においても順序対として関数は導入されると思うのですが、 集合論の言葉では関数というのはある性質を持った、対応付けが存在するという風に書かれていると感じます。 この「存在する」という書き方の関数の定義で、上の定義と同様に有限回の操作で、ある対象に対応づけられた対象を特定できるのでしょうか、つまり実際に対応物をどうやって見つけてくるのかを教えてくれないのではないかといったことは問題として発生しないのでしょうか。 もちろん、論理的に問題なければ(人間の意味のレベルで)実際特定可能かどうかは本質的な問題ではないと思うのですが(非可述的定義も許されているわけですし)。 計算論ではそのような関数は出てこない、帰納的関数を主として扱うようなので、集合論における関数と何か相違点(そういった関数を扱わない理由)があるのだろうかと感じてしまいます。というか逆に集合論では計算論で扱えない関数も扱っているのだろうかと思うのです。 今回も回答本当にありがとうございました、しっかり考えて今後の糧として活かしたいと思います。 後半の方、かなり勘違い、無理解の類が混じっていると思い不安なのですが、もしお時間に余裕ありましたらよろしくお願いします。

関連するQ&A

  • ゲーデルの不完全性定理

    ゲーデルの不完全性定理の証明のアイデアが知りたいと思い、適当な入門書(基礎論の教科書ではないです。)を読んでいるのですが、 まず、定理の主張が「形式的体系Tで通常の自然数を含み、強い意味で無矛盾であり、そこにおける公理や推論規則は帰納的に定義されているかまたはその数が有限であるようなもの、においては文GでGも¬Gも証明できないものが存在する。」 とあるのですが、形式的体系Tがなにを意味しているのかがよくわかりません。これは、形式的と書いてあるのだから文字通り「意味を考えない記号の世界(記号の集まりと、記号を並べて得られる列を変形するいくつかの規則)」と考えればよいのでしょうか? それで、もう一つ質問があるのですが、 まず、準備として記号 ¬,∧,∨,→,∃,∀,(,),0,',+,×,=,x,y,zを用意して、 x,y,zを変数記号と呼びます。 それで、項を次のように定義します。 (i) 0,x,y,zは項。 (ii) t,sが項であるとき、'(t),+(t,s),×(t,s)は項。 (iii)このようにして得られるものだけが項。 (iV)'(t),+(t,s),×(t,s)を簡単にそれぞれt',t+s,t×sと記したりする。また、0',0'',0''',…をそれぞれ1,2,3,…と記す。 また、項tを上の記号の括弧としてではなく、見易さのための補助記号としての(,)を用いることにより、しばしばt(x,y,z)と記したりする。 次に論理式を次のように定義します。 (i)t,sが項のとき、t=sは論理式。 (ii)φとψが論理式でxが変数記号のとき、(¬φ),(φ∧ψ),(φ∨ψ),(φ→ψ),(∀xφ),(∃xφ)は論理式。 (iii)このようにして得られるもののみが論理式 (iV)見易さのために括弧を適当に省略して論理式を記すこともある。 以上により、与えられた記号列が項か論理式かそれ以外のものか判定できるようになります。 準備した記号¬,∧,∨,→,∃,∀,(,),0,',+,×,=,x,y,zを普通に解釈することで、論理式の意味を考えることができるようになります。 ただし、'は後者関数と解釈します。 次に、¬,∧,∨,→,∃,∀,(,),0,',+,×,=,x,y,zに 素数2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53を割り当てます。 記号列が与えられたとき、各記号を上記の対応に従い素数n_1,n_2,n_3,…に置き換え、2^(n_1)*3^(n_2)*5^(n_3)*…を対応させます。対応する数をゲーデル数と呼びます。 以上で準備は終わりで、 質問ができるのですが、 「mがTのある論理式のゲーデル数である」という非形式的な主張は mを素因数分解して各素数の指数を調べることである論理式のゲーデル数であるかどうかがチェックできるので、解釈すると「mがTのある論理式のゲーデル数である」という意味になる論理式が作れる、とあるのですが"具体的"にはどのようにして作るのでしょうか? 私は、論理式の定義が再起的であるから、「mがTのある論理式のゲーデル数であるかどうか」をコンピュータに判定させること(とてつもなく時間がかかりそうですが)可能だと思うので上のような論理式は作れると思うのですが、実際に作るとどんな論理式になるのか興味があります。

  • ゲーデルの不完全性定理とは?

    入門書を読んで理解を深めてから質問しようと思っていたのですが、なにぶん多忙かつ 魯鈍であるため、ほとんど理解していない状態での質問をお許しください。 ゲーデルの不完全性定理の入門書を読むと、一般人向けの説明として次のように記述されて います。 ●自然数論を含むような数学的体系の無矛盾性を、その体系内で証明することはできない。 これは、分かりやすいく言うとどういうことなのでしょうか。論理記号式を使用しないと 説明は無理ですか。 不完全性定理は「自己参照」とか「自己言及」を行なった際に生じる、避けられない 困難性や矛盾の存在を言い表しているのだと思いますが、次のような(安直とも言える) 拡大解釈を許すような、普遍性のある定理なのでしょうか。 ●認識主体が自分自身を完全に認識することはできない。(認識) ●哲学が哲学を完全に定義することはできない。(定義) ●体制が自己の正当性を自分で証明することはできない。(証明)

  • 自然数の定義

    どうも、こんにちは。 私は今数論の本を書いているのですが、 その中で、自然数の定義についてどのように 書けばいいのか分からず困っています。 色々と数論の本は見てみましたが、 どれも「物を数える際に使用する数」とか、 そんな大まかなことしか書いてありません。 私が欲しいのは、自然数の厳密な定義です。 どなたかご存知でしょうか。 また、貴方だったら自然数をどのように定義しますか。 左にもある通り、暇だったらでいいので 回答くださいませ(^-^;

  • ゲーデルの定理

    完全性定理では「任意のモデルで真である文はすべて1階述語論理で証明可能である」 不完全性定理では「自然数論を含む体系は無矛盾である限り、真であっても証明できない 命題が存在する」とありました。 それではこの2つの定理をペアノの公理系に当てはめると「全ての真である命題は証明可能」でありながらどこかに「真であっても証明できない命題が存在する」わけですか? 何だか矛盾するような感じがしますが、そんな訳ありませんよね。 どう考えたらよいのか教えてください。 よろしくお願いいたします。

  • ゲーデルの不完全性定理で出てくる「証明できない」

    ゲーデルの不完全性定理の証明に関する本をいろいろ読んでみましたが(あまり厳密なものは読んでいませんが)、どの本を読んでいても理解が先に進まず立ち止まってしまうところがありました。それは、「証明できない」ということの定式化(言葉がこれで正しいのかわかりませんが)についてです。 ある論理式が「証明できる」というのは、使用できる「公理」と「変形規則(推論というのでしょうか、これも言葉が正確かすみません覚えていません)」を有限回使用してその論理式に実際に到達できること、という理解をしており、これは理解できます。 これに対してある論理式が「証明できない」というのは、以下の(A)(B)(C)のどの意味なのでしょうか。 (A)使用できる「公理」と「変形規則」を有限回使用してもその論理式に実際に到達できない、ということ。 (B)その論理式の否定が証明できる、ということ。 (C)その論理式が証明できない、ということを示す何らかの論理式に、使用できる「公理」を「変形規則」を有限回使用して実際に到達すること。 (A)かなとも思いますが、それってどのように理解すればよいのでしょうか。1000回使用して到達できなくても、1001回使用すれば到達できるかも知れないのでは?  (B)ではないと思っていますが自信がありません。 (C)は実際には(A)だったり(B)だったりする?。。判断ができません。 昔の一時期、結構悩みました。現在再チャレンジしていており同じ個所で悩んでいます。もやもやを晴らして頂ければ大変うれしいです。

  • 述語論理におけるコンパクト性 いくらでも大きい有限

     述語論理のコンパクト性より  「論理式の集合△は、いくらでも大きな有限集合を議論領域とするモデルによって充足可能ならば、△は無限集合を議論領域とするモデルによって充足可能である」 というものが、出てきますが、 そもそも、このいくらでも大きい有限集合と無限集合とは異なるものなのでしょうか(同じ意味ならば上の定理は何もいってないことになりますよね)。無限集合の定義というのがZFCの無限公理からのものなら帰納的に定義されているものなので、それならいくらでも大きい有限(k→k+1をいえる)というのと同じなのではないですかね・・・。  また、上の証明では Anを「すくなくともn個のものがある」 たとえばA2は「∃x1∃x2(x1≠x2)」などとして △∪{A1,A2,A3,A4,A5・・・An・・・} を考えるわけですが・・・の部分はこのままでは無限の論理式を含んだ形になっています、がこれも無限の論理式をそのまま考えることはできないので「無限個の論理式とはどういう意味か」に相当する(おそらくメタ的な)定義があると思うのですが、それはそういったものでしょうか。もしくはそういう定義がないとすると、どう考えればいいのでしょうか。  質問としては、集合のレベルでの無限といくらでも大きい有限とは異なるものなのかということと、論理式の数においてその数が無限とはどういうことを指しているのかということです。  コンパクト性などはモデルと論理式の両方にまたがるメタ的定理なので、その内容に現れる無限という言葉は(「集合における無限」、「論理式の数における無限」として)それぞれの体系での意味としてとらえる必要があるにも関わらず日常語の意味(限りがないというラフな使い方)にひっぱられていることが私の混乱の原因としてあると思うのですが、この分野に明るい方いらっしゃいましたらご回答ください。よろしくお願いします。

  • 自然数は、減法について閉じているか?

    まず私が理解していることを書きます ・自然数の体系を前提として、集合{4,5,6}があるとき、 この集合は減法について閉じていません -> 例えば6-4=2という反例があるため ・整数の体系を前提として、集合{0,1,2}があるとき、 この集合は減法について閉じていません -> 例えば0-2=-2という反例があるため この上で、私が疑問なのは、 ・自然数の体系を前提として、集合{0,1,2}があるとき、 この集合は減法について、閉じているかどうかです (これが閉じているかどうかと、自然数が閉じているかどうかは同じ問題と考えています) 私は、この集合{0,1,2}は減法について閉じているのではないかと思うのです 根拠としては、 1.議論の前提が自然数の範囲に限定されている限り、閉じていないことの反例を示すことができません 2.集合{0,1,2}の減法に関する「全ての有効な式及び解」は、元の集合{0,1,2}内のどれかになります しかし、一般的には、閉じていないといわれています。 0-2=-2といったような、明らかに自然数の範囲を逸脱することを前提とする必要がある方法ではなく、 自然数の範囲内のみで、閉じていないことを証明することができるのでしょうか? 教えてください

  • ゲーデルの証明不能命題

     不完全性定理(形式的体系においてその公理と推論規則を使って証明も否定もできない論理式Aが存在する。)にいう論理式Aには例えばどんなものがあるのでしょうか?  いまだ解かれていない数学上の難問がありますが、これらが論理式Aであるかどうかは、結局のところ証明できた時点でしか判定できないのでしょうか。

  • 宇宙は無限大or 有限のサイズであるは論理では証明できません。

    宇宙は無限大or 有限のサイズであるは論理では証明できません。 (1)『証明:宇宙は無限大サイズである。それを有限空間に包み込む空間を想定します。するとその外側に 空間があり 外空間が宇宙であって 包みこまれた有限宇宙空間より大なる宇宙空間があることになります。宇宙を包みこむ空間よりさらに大きい宇宙があることになり これは矛盾である。それは 有限空間に包み込む空間を想定したことが間違いである。だから宇宙は無限大である。』というものがありました がこれは論理上の証明ではない と考えます。定義に違反した新定義をもちこみ 定義より演繹される命題と矛盾する結果を得ます。すると新定義が間違っているので 矛盾した結果になったと判断します。だから 定義が正しい というのは論理上の証明ではないのです。この定義の論理上証明できないのは  論理上の公理の証明ができないのと同じです。 (2)『証明:宇宙は有限サイズとします。その宇宙を包む空間を想定します。そのするとその外側に 空間があり 外空間が宇宙であって 包みこまれた有限宇宙空間より大なる宇宙空間があることになります。宇宙を包みこむ空間よりさらに大きい宇宙があることになり これは矛盾である。それは 有限空間に包み込む空間より大きい宇宙を想定したことが間違いである。だから宇宙は有限である。』というものも考えられます。 がこれも論理上の証明ではない と考えます。定義に違反した有限宇宙空間より大なる宇宙空間新定義をもちこみ 定義より演繹される命題と矛盾する結果になります。すると新定義が間違っており 矛盾した結果になったと判断します。だから 定義が正しい というのは論理上の証明ではないのです。この定義の論理上証明できないのは  論理上の公理の証明ができないのと同じです。 以上のように 証明は定義にかかるからです。つまり定義にかかるものは証明できないのです。定義は各個人がしたらよいと考えます。私は 観測可能な物がある空間+観測不可能であっても科学的に物があると考えられる空間 と考えます。これは 有限(論理証明はできない)を想定していますが 科学の発展とともに正確に構成が分っていくと考えます。  以上のように考えましたが 間違っているでしょうか。

  • 私が知りたいのは ゲーデルの不完全性定理の幾何学での理解です。

    私が知りたいのは ゲーデルの不完全性定理の幾何学での理解です。 (1)第2不完全性定理では 次の表現があり『公理系Nにおいて、その無矛盾性を証明することは不可能である』、そのなかで問題として『 真であるが証明不可能な主張とは何か。』に対して 答え『公理』とあり 自己言及を表現していることは 理解し易いのです。幾何学では5公理です。この理解はたぶん正しいと思います。 ところが (2)私がよく分らないのは 第1不完全性定理です。『形式的体系Sにおいて、形式的体系Sが無矛盾である限り、「形式的体系Sにおいて命題は証明可能である。」という命題も「形式的体系Sにおいて命題は証明不可能である。」という命題も証明不可能である。』 と表される(別表現もありますが)とあります。 ここで現れる命題は抽象的言語であってよく分らないのです。例えばユークリッド幾何学においてはこの具体例は何でしょうか。私の理解は 「例えば無限遠点において平行線は交わるは証明可能である」はその例のようにおむのですが。つまり 例題には ユークリッド幾何学では未定義の無限遠点が現れており 証明はできない のです。いくら公理を増やして定義を明白にしても 未定義の領域はある ということです。 もう一つの例ですが 無限遠点は扱わないという6番目の公理を追加したとしても 例えば 「X・X=-1 は根がない は証明可能である」も証明できない と思うのです。なぜなら複素数は未定義だからです。つまり 『公理で定義されても未定義域は必ずある』が第一不完全性定理の一つの別表現ではないか と思うのです。この理解が間違っているのかどうか どなたかにお教えて頂きたかったのですが