• ベストアンサー
  • すぐに回答を!

偏微分について

大学1年の者です。 先日課題が出されたのですが、偏微分の基礎もいまいちできていないので困っています。 z=f(x,y), x=rcosθ, y=rsinθのとき、次の式を証明せよ。 (∂z/∂x)^2+(∂z/∂y)^2=(∂z/∂r)^2+1/r^2(∂z/∂θ)^2 他の方の質問も読みましたがいまいちわかりません。 どなたかご教授お願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数995
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

ちょっと意地の悪い問題ですね。 右辺の z は独立変数が r とθの関数で g(r, θ) = f(rcosθ,rsinθ) という別の関数です。偏微分では入力が異なって出力が同じ意味になる 関数名を同じにしてしまうということが普通に行われるので注意が必要です。 ∂f/∂x=∂z/∂x ∂f/∂y=∂z/∂y 合成関数の偏微分から ∂g/∂r = (∂f/∂x)cosθ + (∂f/∂y)sinθ ∂g/∂θ = (∂f/∂x)r(-sinθ) + (∂f/∂y)rcosθ (∂g/∂r)^2 + (1/r^2)(∂g/∂θ)^2 = (∂f/∂x)^2 + (∂f/∂y)^2 = (∂z/∂x)^2 + (∂z/∂y)^2

共感・感謝の気持ちを伝えよう!

質問者からのお礼

お礼が遅れてしまいすみません、ありがとうございました。

その他の回答 (1)

  • 回答No.2
  • info222_
  • ベストアンサー率61% (1053/1706)

z=f(x,y) x=rcosθ, y=rsinθ ∂z/∂x=f_x, ∂z/∂y=f_y, ∂z/∂r=f_r, ∂z/∂θ=f_θ と書くことにすると f_r=f_x*x_r+f_y*y_r=f_x*cosθ+f_y*sinθ f_θ=f_x*x_θ+f_y*y_θ=f_x*(-rsinθ)+f_y*rcosθ =r(f_ycosθ-f_xsinθ) (∂z/∂r)^2+(1/r^2)(∂z/∂θ)^2 =(f_r)^2+(1/r^2)(f_θ)^2 =(f_x*cosθ+f_y*sinθ)^2+(f_ycosθ-f_xsinθ)^2 ={(f_x)^2+(f_y)^2}*{(cosθ)^2+(sinθ)^2}} +2(f_x*f_y-f_x*f_y)cosθsinθ =(f_x)^2+(f_y)^2 =(∂z/∂x)^2+(∂z/∂y)^2 (証明終り)

共感・感謝の気持ちを伝えよう!

質問者からのお礼

お礼が遅れてしまいすみません、ありがとうございました。

関連するQ&A

  • 偏微分と極座標

    偏微分と極座標 (∂^2) f (x,y)/∂x^2 + (∂^2) f (x,y)/∂y^2 から 極座標表示 x=rcosθ,y=rsinθ を用いて [ ∂^2/∂r^2 +(1/r)(∂/∂r) + (1/r^2)(∂^2/∂θ^2) ] f (r,θ) を導くという課題なのですが、見当がつかず困っています。 どなたかご教授頂けないでしょうか?よろしくお願いします。 ∂z/∂u = (∂z/∂x)(∂x/∂u) + (∂z/∂y)(∂y/∂u) ∂z/∂v = (∂z/∂x)(∂x/∂v) + (∂z/∂y)(∂y/∂v) を用いるのでしょうか?

  • 偏微分の問題です

    偏微分の問題です z=f(x,y) x=rcosθ y=rsinθ について、Z[x]とZ[xx] (zのxについての、1階偏微分と2階偏微分) をr,θ,Z[r],Z[θ]を用いて表したいのですが、後者のほうがわからなくて困っています。 前者は自分で計算したところ Zのxでの1階偏微分 Z[x] = Z[r] cosθ - 1/z * Z[θ] sin(θ) となりました。これもあっているか不安です。どなたか教えていただけると嬉しいです。

  • 偏微分の問題について

    偏微分の問題で、 Z=e^(x^2+y^2) x=rcosθ 、 y=rsinθ に対してZr、Zθ を求めよ。 という問題でどうしても答えがでません。 どなたか教えてください。よろしくお願いします。

  • 偏微分の問題

    物理学基礎論で、偏微分を習いましたがよく分かりません>< 今朝、数学のジャンルで質問させていただきましたが、質問の意味が分からないと言われたので、問題ごとこちらに質問させていただきます。 1、次の偏微分を求めよ。ただし位置ベクトルrの独立変数はデカルト座標(x,y,z)である。 ∂r/∂x これに対し私の答えは・・・ Δr/Δx=lim {r(x+Δx,y,z)-r(x,y,z)}/ Δx と、これでよいのでしょうか??(極限はΔx→0です) 2、次の偏微分を求めよ。ただし()-()ではデカルト座標xyzを極座標rθΦの関数とし、()-()では極座標rθΦをデカルト座標xyzの関数として微分を行うこと。 ()Δx/Δθ=rcosθ×cosΦ ()Δy/ΔΦ=rsinθ×cosΦ ()Δz/Δr=cosθ これでよいでしょうか・・・?? ()Δr/Δy=y/√(x^2+y^2+z^2)=y/r ()Δθ/Δz ()ΔΦ/Δx ()()がまったく分かりません^^;たとえば、()ではtanθを微分したらよいのでしょうか?? どなたかよろしくお願いいたします。

  • 偏微分

    次の偏微分を求めよ。ただし(1)-(3)ではデカルト座標xyzを極座標rθΦの関数とし、(4)-(6)では極座標rθΦをデカルト座標xyzの関数として微分を行うこと。 (1)Δx/Δθ=rcosθ×cosΦ (2)Δy/ΔΦ=rsinθ×cosΦ (3)Δz/Δr=cosθ これでよいでしょうか・・・?? (4)Δr/Δy=y/√(x^2+y^2+z^2)=y/r (5)Δθ/Δz (6)ΔΦ/Δx (5)(6)がまったく分かりません^^;たとえば、(5)ではtanθを微分したらよいのでしょうか?? よろしくお願いします。

  • 偏微分関数の問題が分かりません!

    大学で偏微分の問題が出されたのですが分かりません。教えてください!! [問]z=f(x,y)はC^2級で、x=rcosθ,y=rsinθとする。次の問いに答えよ。 ・x(∂z/∂x) + y(∂z/∂y)=0の時、zはθに依存することを示せ。 ・(1/x)*(∂z/∂x) = (1/y)*(∂z/∂y)の時、zはrにのみ依存することを示せ。 ・(∂^2z/∂x^2) + (∂^2z/∂y^2) = (1/r)*(∂z/∂r) + (1/r^2)(∂^2z/∂θ^2) となることを示せ。

  • 偏微分とは・・・?

    物理化学の課題をしていたら教科書に「偏微分が零になるような・・・」とありました。偏微分とは普通の微分とは違うのでしょうか。あと与えられた式の前に「∂」というのがあったのですがこれはやはり偏微分の記号なのでしょうか。

  • 偏微分について

    偏微分をこの前習ったのですが、いまいちよく分かりません><どなたか手助けお願いいたします。 位置ベクトルrの独立変数はデカルト座標(x,y,z)で、 Δr/Δx=lim {r(x+Δx,y,z)-r(x,y,z)}/ Δx と、これでよいのでしょうか??(極限はΔx→0です) またデカルト座標(x,y,z)、極座標(r,θ,Φ)について、デカルト座標を極座標の関数とし、または極座標をデカルト座標の関数として偏微分を行うときに、 Δx/Δθ=rcosθ×cosΦ Δy/ΔΦ=rsinθ×cosΦ Δz/Δr=cosθ でよいのでしょうか?? あと、これの逆の Δr/Δy,Δθ/Δz,ΔΦ/Δx のやり方が分かりません。 どなたかよろしくお願いいたします。

  • 偏微分係数の問題

    次の関数の(0,0)における偏微分係数を、定義に従って求めよ f(x,y)=(x^3-y^3)/(x^2 +y^2) ((x,y)≠(0,0)のとき) 0((x,y)=(0,0)のとき) ↑少し見づらいかもしれませんがご了承下さい 以上の問題で他の問題と比較しながら解いたところ、fx(0,0)は解答通り1になったのですがfy(0,0)が-1になりませんでした ちなみに、自分はyについて偏微分してから x=rcosθ、y=rsinθ を代入して求めました 解き方が分かる方簡単にでいいので解答をお願いします(>_<)

  • 電位の偏微分

    画像のようにφが定義されていて、極座標表示してあったrcosθをxに、rを√[x^2+y^2]に戻した式 φ = px / {4πε_0(x^2+y^2)^(3/2)} のx成分の偏微分 E_1 y成分の偏微分E_2 について、変数はxとyだけの場合、画像の結果になるのですが、 ここでE_1のアウトプットで -1/(x^2+y^2)^(3/2)が導かれているのはどうしてでしょうか。 手前の3x^2/…の方は合成関数の偏微分より求められるところまではよかったのですが-1/…のパートがどうして計算過程で導かれるのか恥ずかしながらわかりません。 公式と手順をお手数ですが詳しく教えてください。