• 締切済み

1回の常微分方程式解法について

yammy-jの回答

  • yammy-j
  • ベストアンサー率60% (6/10)
回答No.5

何か根本的な勘違いをしていませんか? > 特にtが時間の場合、g(t)は未来には影響しますが、過去には影響できない > 計算が一方向に進むというイメージです。 例えば放射性崩壊の計算には、現在から未来へ計算する場合(拡散した放射能が失われるのにかかる時間の計算)と現在から過去へ計算する場合(同位体年代測定)の両方がありますよ。 もしも、一方向にしか物理的に意味のある解が得られないのであれば、それは方程式の形や解法(ルンゲクッタ法など)の問題ではなく、モデル化しようとしている物理現象固有の問題ではないかと思います。

関連するQ&A

  • 2階微分方程式の解法

    d^2y/dx^2+2*x*dy/dx=0 境界条件 x=0: y=1、x→∞: y→0 上記の微分方程式をルンゲクッタ法を使って数値的に解きたいのですが、どのように x→∞ : y→0 の境界条件をいれればいいかわかりません。どなたか教えて頂けないでしょうか。回答よろしくお願いします。

  • 常微分方程式の問題

    微分方程式x'=x^2-t-1で初期値がx(0)=1の問題で、 オイラー法とルンゲクッタ法は出せたのですが、 それらと比較するために出す解析解がわかりません。 どなたかよろしくお願いします。

  • 偏微分方程式の数値解法

    偏微分方程式の込み入った質問です。 2次元(x,y)の空間で2つの関数f(x,y),g(x,y)を考えます。 そこで、それぞれにラプラス方程式を立てました。 fxx+fyy = 0  (1) gxx+gyy = 0 (2) です。これは境界値問題で、差分式からSOR法を使って収束計算によって数値解を求めることができます。f, gはそれぞれ独立という形にはなります。 そこにもう1つ式が出てきました。 fxfy + gxgy = 0 (3) というものです。f,gをx,yで1回微分してできる式です。 都合3つの式が出てきました。 この数値解を求めるにはどのような方法があるでしょうか。 数値解ですから近似解です。 3つ目の拘束条件の下でのラプラス方程式とみると、ペナルティ関数とかラグランジュの未定係数法とかいろいろあるかもなと思いますが。 3つ目の式は完全に満たすというより、できるだけ満足するようにしたいというものです。 よろしくお願いします。

  • 常微分方程式の数値計算

    実験で常微分方程式の数値計算をしました y'(x)=2xy,y(0)=1.0(解はy=ex2)←eのx二乗の微分方程式できざみ幅h=0.1、区間〔0,2〕の条件で オイラー法と改良オイラー法とルンゲクッタ法を使って 表計算ソフトを使って求めよとあるのですが、 表計算で近似値のy座標とか Δt後のxの変化分K1とか求めるのですが、全然意味がわからなくて、 何かいい方法はないでしょうか?

  • 常微分方程式、4次のルンゲクッタ法

    (d^2x/dt^2)-2(dy/dt)=f(x) (d^2y/dt^2)+2(dx/dt)=g(y) この連立常微分方程式を4次のルンゲクッタ法で解くためにはどうすればいいのでしょうか?

  • 高階連立常微分方程式の数値計算

    4次のルンゲクッタ法を用いた数値計算を勉強しています. 1階連立常微分方程式と高階常微分方程式は理解でき,プログラムも作成することができました. 次に高階の連立常微分方程式を解こうと思ったら,頭が混乱してしまいました. 4次のルンゲクッタ法を用いて高解連立常微分方程式を解く考え方を教えて頂ければ嬉しいです. また何か良い参考書があれば教えて頂きたいと思います. よろしくお願いします.

  • 偏微分方程式と常微分方程式

    物質濃度をC、時間をt、座標をx、物質の分子拡散係数をνとすると分子拡散による物質濃度の時空間変化は以下の偏微分方程式によって記述される。これについて以下の問いに答えよ。 ∂C/∂t=ν((∂^2)C/∂x^2) (1)C(x,t)=X(x)T(t)と仮定することにより、X(x)およびT(t)に関する常微分方程式をそれぞれ導出せよ。 (2)(1)での2つの常微分方程式の一般解をそれぞれ求めよ。 (3)上記拡散方程式は一般に放物型と言われる偏微分方程式に分類される。これとは別の楕円型と言われる偏微分方程式を1つ、数式で記述せよ。 困っているのは(2)の問題です。 以下のようなwebサイトを見つけました。 http://www12.plala.or.jp/ksp/mathInPhys/partial/ これに沿って問題を解いていったとき、一般解をどのようにするべきか迷いが生じました。今回の問題では初期条件や境界条件はないため、一般解はλが正、ゼロ、負のとき全ての場合の一般解を求めなければならないということですか? 後もう1点、もしよければ、楕円型の微分方程式として有名な物理現象、あるいは式を教えていただけないでしょうか? ヨロシクお願いしますm(_ _)m 特に(2)の問題に関する質問、ヨロシクお願いします。。。

  • この方程式、stiffなんでしょうか・・・

    僕は以下のような連立微分方程式を数値計算で解こうと試みています。 現在微分方程式の解を級数展開と変数変換とルンゲクッタ法で求めようとしています。 しかし、どのように初期値をいじっても必ず解が発散してしまいます。 色々と自分で調べてみる過程で微分方程式を数値計算で解くときにstiff問題というものが生じることがあると知りました。 解の挙動が急に変わる場合や境界条件に大きく依存する場合などで途中からルンゲクッタ法などで数値計算できなくなり、解が発散してしまうという条件がぴったり自分の場合と一致しました。 以下の連立微分方程式はstiffなのでしょうか? (x-1)^4*f ''(x)+(2x-1)(x-1)^3/x*f '(x)-{ ((x-1)/x+A(x))^2+f^2-1 }f=0, (x-1)^4*A''(x)+(2x-1)(x-1)^3/x*A'(x)-(x-1)^2/x^2A(x)-f^2(A+(x-1)/x)=0 stiffだとルンゲクッタ法は使えなくなってしまうんですよね・・・・?

  • 偏微分方程式の解き方を教えていただけないでしょうか

    偏微分方程式の解き方を教えていただけないでしょうか。 u_t (tの一階微分) = u_xx (xの二階微分) x∈[0,1]のとき、 境界条件 u_x(0,t)=0 、u(1,t)=5t (↑xの一階微分) 初期条件が、 u(x,0)=0 自分で _____________________ du/dt = d^u/dx^2 x∈[0,1] du/dx(0,t)=0 、u(1,t)=5t u(x,0)=0 のとき、変数を分離して、 u=(X,Y) X''=-λXとしました。 X=c1 cos(√(λ) x) +c2 sin(√(λ) x) として、 X’=√(λ) *(ーc1 sin(√(λ) x) +c2 cos(√(λ) x) ) 境界条件をいれると、 X’(0)=√(λ) *(ーc1 sin(√(λ) 0) +c2 cos(√(λ) 0) ) より c2=0 X(1)=c1 cos(√(λ)*1) +c2 sin(√(λ)*1) =5t c1*cos(√(λ)*1) =5t ____________________________ と計算をしてみたのですが、5tの扱い方がわからず、躓いてしまいました。 どのように計算をすればよいか、教えていただけないでしょうか。

  • 微分を数値的に積分して近似解を求める方法

    du/dt=f(u,t) というような感じの単純な常微分方程式を逐次的にコンピュータで数値積分していく場合、単純陽解法とかルンゲクッタ法とか予測子・修正子法、台形公式などいろいろあると思います。あるいは反復計算を含むものなどもあると思います。これらについてグラフを作図して解析解との差を評価したりするわけですが、偏微分方程式で使う場合も全く同じ評価がそのまま当てはまるでしょうか。常微分方程式での知見がそのまま偏微分方程式の計算に当てはまるのか、ということなのですが。反復計算を用いる方法で常微分方程式では芳しくない結果だったのですが、偏微分の場合は反復計算の価値が高くなるのではないかと思ったりするものですから。反復計算、すなわち繰り返しをやるうちに陰解法的になっていくからなのですが。 いかがでしょうか。細かい内容の質問で恐縮ですが、よろしくお願いします。