• ベストアンサー

留数が上手く求まりません

積分 ∫(x^2)dx/(x^4+1) [-∞→∞] の値を求めたいのですが、上半面にz=e^(πi/4),e^(3πi/4)に1位の極を持つので、留数定理より積分値を求めようとしました。しかし、どうも上手く行かず両方とも留数がゼロになってしまいます。答えは(√2・π)/2なのですが、模範解答が省略されていて、何がいけないのかが全く分からないでいます。留数を求める途中の計算過程を教えて欲しいです。それとも私の極の求め方などが既に間違っているのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.2

>両方とも留数がゼロになってしまいます。 なりません。 計算すれば以下の通り。 z=e^(πi/4)における留数 Res(f(z),z=e^(πi/4))=lim(z→e^(πi/4)) (z^2)(z-e^(πi/4))/(z^4+1) =lim(z→e^(πi/4)) (z^2)/((z-e^(-πi/4))(z-e^(3πi/4))(z-e^(-3πi/4))) =lim(z→e^(πi/4)) (z^2)/((z-e^(-πi/4))(z+e^(-πi/4))(z+e^(πi/4))) =lim(z→e^(πi/4)) (z^2)/((z^2+i)(z+e^(πi/4))) =i/(2i2e^(πi/4))=(1/4)e^(-πi/4) =(1-i)/(4√2) z=e^(3πi/4)における留数 Res(f(z),z=e^(3πi/4))=lim(z→e^(3πi/4)) (z^2)(z-e^(3πi/4))/(z^4+1) =lim(z→e^(3πi/4)) (z^2)/((z-e^(πi/4))(z-e^(-πi/4))(z-e^(-3πi/4))) =lim(z→e^(3πi/4)) (z^2)/((z-e^(πi/4))(z+e^(3πi/4))(z+e^(πi/4))) =lim(z→e^(3πi/4)) (z^2)/((z^2-i)(z+e^(3πi/4))) =(-i/(-2i2))*(-1-i)/√2 =-(1+i)/(4√2) >答えは(√2・π)/2なのですが 違うようです。 積分は、留数定理より 積分=2πi((1-i)/(4√2)-(1+i)/(4√2)) =2πi/(-2i/(4√2))  =-4π√2 ...(答え)

kasasa99
質問者

お礼

参考書と答えが違うというのは少し不安ですが、有難うございました。

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

単純に計算すれば 0 でない留数が求まるはず (1位の極だし) なんだけど.... あなたはどう計算して「留数がゼロ」となったんでしょうか?

関連するQ&A

  • 留数を使った問題です

    ∫[0, 2π] (1/(cosX +3)^2)dXの積分なんですがcosX=z+z^-1/2、z=e^(iX)として変形しなおすと ∫c(4z/i(z^2 +6z+1)^2)dzとなって留数を求めるために分母が0になるzの値を探すと z=-3±2√2 となってここから留数を求めて積分値を出してみたのですが回答の7(√3)π/72と一致しません 2次の極になっていることに注意して留数を求めたのですがどうにもわかりません どなたか解決していただけないでしょうか

  • 積分値を留数定理で求める方法

    問題:次の積分の値を求めよ ∫exp(-z)/(z(z-1)(z-3))dz 但し、複素積分は円周 |z|=2 上半時計回りに行うものとする。 上の問題を、留数定理を用いて以下のように解きました。 C : z=2×exp(iθ) 極は0、1、3でそれぞれ1位であり、 Res[f(z),z0]=lim[z→z0] (z-z0)f(z) であるから R(1)=(1/3-1/12)×exp(-1) R(3)=(1/9-1/4)×exp(-3) R(0)=1/2-1/18 よって、留数定理より、 与式=2πi(R(0)+R(1)+R(3)=2πi(4/9 - (1/4)×exp(-1) - (5/36)×exp(-3)) 質問したいことは、 1、この問題を留数定理で解く方針は正しいか 2、特異点が極かどうか(極でないとRes[f(z),z0]=lim[z→z0] (z-z0)f(z)が使えないので) 3、留数定理の使い方が正しいか 4、上記の解答は正しいか です。回答よろしくお願いします。

  • 留数定理について質問です。

    留数定理について質問です。 次のような問題が出題されました。 「Fourier積分を利用し微分方程式の主要解を求めよ。 (d^2/dx^2)G+κ^2G=-δ(x-ξ)」 解答の詳細は省略しますが G=(1/2π)∫dk{exp[ik(x-ξ)]}/(k^2-κ^2) の積分を[-∞,∞]で計算することに帰着します。(これまでのところで、δはδ関数、iは虚数単位です。) これをkの複素平面上で留数定理を用いて計算するという定石的なやり方なのですが、積分路の取り方としてx-ξ>0なら虚軸が正の半円+実軸上、x-ξ<0なら虚軸が負の半円+実軸上というループを採用します。極が実軸上にあるのでx-ξ>0の場合のループではk=κのみをループ内に含むように、x-ξ<0の場合はk=-κのみを含むように選ぶと Res(κ)=exp[iκ(x-ξ)]/(2κ)より x-ξ>0のときG=i{exp[iκ(x-ξ)]}/(2κ) とあります。ここまではいいのですがx-ξ<0の場合、 「同様に、G=i{exp[-iκ(x-ξ)]}/(2κ) (x-ξ<0)」 となっています。自分の計算ではG=-i{exp[-iκ(x-ξ)]}/(2κ)となるのですが、何故合わないのか分かりません。留数の公式に当てはめるとexpの肩と全体の符号が極の選び方で逆になるように思うのですが、解答では全体の符号が変化していないように思います。 x-ξ<0の場合の計算の詳細を教えていただけないでしょうか?

  • 留数定理が分かりません

    留数定理を使って∫(cos(x))^(2n)dx 積分範囲は0から2π、nは正の整数を解けという問題です。cos(x)=(1/2)(z+1/Z)と置いてやろうと思いましたが、お手上げです。どなたか詳しい方教えてください。宜しくお願いします。

  • 留数計算と積分

    留数定理を使い積分値を求める問題でわからない問題があったので質問します 期限(18日正午)が迫ってもわからないのでお助け願います。 ∫_(|z-i|=1) 1/(z^2+1)dz です ちなみに解は|z-i|<1内の極はiであり、解はπとなっています。 実はあまり留数はわかっていません・・・けど解かなければなりません。 以下の通りしてみた(といっても最終解が合っただけですが・・) おかしいところが合ったらぜひ教えていただけないでしょうか?お願いします。 まずは留数の計算をする。z→iのとき、(z-i) 1/(z^2+1)の極限を求める。 (z-i)/(z^2+1) = 1/(z+i) = 1/2i よって求める値は、2πi* 1/2i=π

  • 留数定理による実定積分の計算について

    留数定理による実定積分の計算について 現在複素積分について勉強中のものです。 ∫^{+∞}_{-∞}f(x)exp{itx}dxという形の積分の計算なのですが tを実数とし,kはΣの添え字,mは極の個数,iは虚数とします. このときtがt<0のとき ∫^{+∞}_{-∞}f(x)exp{itx}dx=-2πiΣ^{m}_{k=1}Res{f(z)exp{itz}} となりf(z)が偶関数のとき ∫^{+∞}_{0}f(x)cos(tx)dx=πiΣ^{m}_{k=1}Res{f(z)exp{itz}} となりf(z)が奇関数のとき ∫^{+∞}_{0}f(x)sin(tx)dx=-πΣ^{m}_{k=1}Res{f(z)exp{itz}} となる これで合っていますでしょうか? よろしくお願いします。

  • 複素解析 留数定理

    ∫[|z|=3] dz/(z^2 -3z+2) ∫[|z|=2] z/(z+1)(z^2 +1) という2つの問題を留数定理を使って自分なりにチャレンジしてみたのですが、よく理解できないところがあるので質問させていただきます。 まず特異点(?)を求めるのに2問とも分母=0としました。 そして留数を出すのにlim(z→a) f(z)(z-a) としました。 最後に留数定理で2πiをかけて、それぞれ答えが0、πiとなりました。 参考書の見よう見まねでやったので、ほとんどチンプンカンプンな状態なんですが答えとしては合っていますでしょうか。 また、留数を求める際に「○位の極」っていうのを意識しないといけないようなのですが、ここではどうなのでしょうか。 最後に、問題に「反時計回り一周の積分である」とありますが、特に意識しないといけませんか? よろしくお願いします。

  • 留数定理を用いる計算

    曲線Cが|z-i| = 1 で表される円であるとき、∫c {(e^z)/(z^4 -1)}dz の値を求めよ という問題にて、 (z^4 -1)=(z+i)(z-i)(z+1)(z-1)  Cはz=iを中心とした半径1の円なので、正則で無い点はz=iのみ z=iにおける留数 Res[f,i]=lim[z→i](z-i)f(z) =(e^i)/{2i(i+1)(i-1)} =(e^i)/(-4i) 留数定理より、 ∫c {(e^z)/(z^4 -1)}dz  =2πi{-(e^i)/4i} =-πei/2   と計算しました しかし、解答は -{(πcos1)/2} - {(πsin1)i}/2 とのことでした。 解答から、正則で無い点が2つ、それぞれが2位の極だと考えたのですが、見当がつきません ご教授、お願いします

  • 留数定理の質問です

    ∫[x=0→x=∞] dx exp(iax) / b-x^2   の積分値って留数定理で求まりますか?もしできるのならば、やり方を教えてください。よろしくお願いします。

  • 留数定理

     皆さん、こんにちは。今回は留数定理について聞きたいことがあるのですが問題は、 Cを円 |z+i|=2 とするとき留数定理を使って∫c {z^2・sin (1/z)}dz を求めなさい。  というものですが、私はこの時、(z^2)と{sin (1/z)}で部分積分を利用してとこうとしています。そこで、参考書やネットを通じて調べましたが、sin (1/z)の積分の仕方が今ひとつ理解できません。 どなたか、分かる方がいらっしゃれば幸いです。よろしく願います。