• ベストアンサー

角度について質問です。 角度とは,”角度は原点(

角度について質問です。 角度とは,”角度は原点(中心)からみてx軸上右(単位円なら(1,0))から反時計回りに回った角度で表します。-15度なら(1,0)から時計回りに15度。165度なら(1,0)から反時計回りに165度。-195度なら(1,0)から時計回りに195度だから165度と同じです。”を指すそうです。 質問内容 -15°時計回りに回った角度は何°ですか?

質問者が選んだベストアンサー

  • ベストアンサー
  • shuu_01
  • ベストアンサー率55% (760/1366)
回答No.1

質問: -15°時計回りに回った角度は何°ですか? 回答: 15°です 【関連した質問の補足】 質問: 原点から x軸上で 1進んだ点はどこにありますか? 回答: (1, 0) にあります 質問: 原点から x軸上で -1進んだ点はどこにありますか? 回答: (-1, 0) にあります 質問: 原点から x軸上マイナスの方向へ、-1進んだ点はどこにありますか? 回答: (1, 0) にあります

nazeka2017
質問者

お礼

回答ありがとうございます。 関連した質問の補足でまた頭が痛くなりました・・・

その他の回答 (1)

  • hashioogi
  • ベストアンサー率25% (102/404)
回答No.2

15°時計回りに回った角度は-15° -15°時計回りに回った角度は15° ということですよ。

関連するQ&A

  • 水平面に対して角度α傾いている滑らかな斜面がある

    水平面に対して角度α傾いている滑らかな斜面がある 質量mの小球Pをつけた長さrの糸の端を斜面上の点Oに止める Pは斜面上で点Oを中心とする半径rの円運動をしている 点Oを原点として、斜面に沿って水平にx軸を取り、Pの位置をx軸から反時計まわりの角度θで表す 重力加速度をgとする θ=0のときのPの速さはv0である Pの速さvと糸の張力Tをθの関数としてそれぞれ表せ 解き方を教えてください!

  • 3次元空間において、任意の座標(原点除く)から原点を見通した場合の、2

    3次元空間において、任意の座標(原点除く)から原点を見通した場合の、2軸の見かけの角度について質問があります。 例えば、XYZ空間があったとします。X、Y、Z軸はそれぞれ90°で交わっています。 このとき、XY軸の見かけの角度が90°の場合、”XZ平面、もしくはYZ平面上の任意の座標(原点除く)から原点を見ている”ということがいえると思います。 このように、2軸の見かけの角度がわかっている場合、どの平面上の座標から原点を見通しているかがわかると思うのですが、導出方法や具体的な計算方法がわかりません。 射影幾何学等などに詳しい方がいらっしゃいましたら、ご教示お願い致します。

  • 角度から円の座標を求めるには?

    x軸をベースに、原点からの角度によって、座標を求めたいのですが、どのように計算すればいいのでしょうか? 例) x軸に対し、上方向に 30度の直線を引きたいとき

  • 反比例と原点対称について質問です

    質問1:反比例は原点対称であると聞きました。 また、原点対称の定義が、原点に関して点対称なものであると聞きました。    反比例のグラフを180度回転したとき、回転する前のグラフとは重なりません。(「もう1つのグラフ」と重なるのはわかります) これは点対称ではないと思うんです。 だって点対称は、「180°回転させるともとの図形にピッタリ重なる図形」のことだから、回転する前の「もとのグラフ」とは重なり合ってないと思います。何故、反比例のグラフは原点対称なのでしょうか? 質問2:原点対称とは、「原点(たぶん座標軸の交点のこと)」を対称の中心とすることであるとも聞きました。 しかし、原点を対称の中心とするのにもかかわらず、実際は反比例のどこかのグラフの1点を対称の中心として、180度回転させると思います。 何故、原点を対称の中心とするのにもかかわらず、実際は反比例のグラフのどこかを対称の中心とできるのでしょうか? 質問3:反比例のグラフは原点対称ですが、そのことと「点対称移動」はどのように関わってくるのでしょうか?

  • 見かけの角度の変化から平面の回転を求めるには?

    X,Y,Z軸がそれぞれ直行している3次元空間で、XY平面を底面、Z軸を高さとし、 視点(0,0,z)から原点を見下ろしているとします。 そこで、XY平面に原点(0,0,0)を中心とする四隅が直角な四角形(正方形または長方形)を配置し、 その四角形をX,Y,Z軸について回転させたとき、 視点から見える四角形の四隅の見かけの角が90度ではなくなると思います。 この見かけの四角形(辺の長さや四隅の角度)から、元の四角形がX,Y,Z軸にそれぞれ何度傾いているかを求めたいのですが、可能でしょうか? 透視投影やアフィン変換などを調べていましたが、いまいちよくわかりませんでした。 参考になるサイトや、解き方などを教えて下さい。

  • 円柱を有る角度で切った場合の長軸の角度の求め方を教えてください

    以前円柱を有る角度で切断した場合に出来る楕円の計算方法をお教え頂きましたが。今回Ф76.2の円柱で軸は初めはZ軸に平行で、X軸周りに13度、Y軸周りに8度に傾けて切断した時の断面形状の計算式はお教え頂いた計算の仕方から、Z軸に平行な単位ベクトルez=(0,0,1)をX軸周りに13度まわすと (0、sin13°、cos13°)これを更にY軸周りに8度まわすと (cos13°sin8°、sin13°、cos13°cos8°)でZ軸とのなす角をθとすると ezとpの内積は 1・1・cosθ=0+0+cos13°cos8°   θ≒arccos(0.9648)≒15.228°   楕円形状は 短円=76.2   長円=76.2/cos15.228°≒78.972 だと思うのですが(余り自身が有りませんが)、長円はx軸に対して角度が付いた状態で有ると思いますが、その角度の計算方法が分かりません申し訳ありませんが再度お教え下さい。

  • 原点からの距離

    先ほどから、楕円についての質問を何度かさせていただいています。 回答してくださった方、ありがとうございます。 もう一つ、お願いします。 ある角度θの時、原点から弧(でいいのでしょうか?)までの長さを求めるにはどうしたらいいでしょうか? 添付画像のXの長さです。 (x,y)とθがわかれば、簡単に計算する方法があった気がするのですが、記憶が定かではありませんし、 できることなら角度とa,bから1つの式で長さが出せれば・・・と思います。 何度もご迷惑をおかけしますが、よろしくお願いします。

  • X、α軸で円が移動した時のX、Y軸中心座標

    X軸と、X軸と角度θ(反時計回りが正)にあるα軸平面で、原点を中心とする半径rの円が移動して、X切片がrからr+x1、α切片がrからr+α1になった時、円の中心座標はX軸、Y軸平面で(0,0)からどこに移動するのでしょうか?。 以前同様の質問をして、この場合(x、y)=(r+x1、0)、((r+α1)cosθ,(r+α1)sinθ)の2点を通るので、円の方程式(x-p)^2+(y-q)^2=r^2に2点を代入して引き算し、p、qを求めれば良いと教えてもらいました。 しかし何度方程式を解いても作図した正解と答えが一致しません。誰か方程式を解いてみてくれませんでしょうか?。 よろしくお願いします。  

  • 原点Oを中心とする単位円周上に点A(x1,y1),点B(x2,y2)が

    原点Oを中心とする単位円周上に点A(x1,y1),点B(x2,y2)があります。 AとBは一致することはなく、原点Oに関して対称な位置にないものとします。 弧ABは2通り考えられますが、短い方の弧は ・点Aから時計回りに点Bへ進む ・点Aから反時計回りに点Bへ進む のどちらになるかを判別したいと思います。 点Aや点Bはx軸やy軸上に来ることが多く 特にその場合の精度は欲しいため あまりarctan(y1/x1)などは使いたくありません。 実は、http://okwave.jp/qa/q6152511.html で質問した者なのですが こういう解決法もあるのではないかと質問させていただいた次第です。 よろしくお願いいたします。

  • 反比例について、原点対称とはどういう意味ですか?

    質問1:反比例のグラフは、原点対称といわれますが、原点対称とはどういう意味ですか? 質問2:原点対称とは、ある方の定義として、「原点に対して点対称」というものがありました。  だとすれば以下のURL先の画像(原点に対して対称な反比例のグラフです)の反比例のグラフは、原点(ここでいう原点とは、x軸とy軸の交点、0)に触れていないので、原点に対して点対称ではないと思うんです。「原点に対して点対称」であるならば、この反比例のグラフは原点に触れてる必要があると思いますし、原点を「対称の中心」として180度回転したときに、2つのグラフはぴったりと一致してるはずです。  上記の定義が正しいとしたら、何故原点に触れていないのでしょうか? http://material.miyazaki-c.ed.jp/ipa/tyugakusugaku/hireihanpirei_1/hanpireigurahu/e1han3.jpg 質問3:反比例のグラフと原点対称について、「対称移動」の概念とどう関わってくるのでしょうか?