• 締切済み

固有値問題 微分方程式

固有値問題です。 (d^2/dx^2)*u(x)=λ*u(x) 境界条件 du(0)/dx-u(0)=0 du(1)/dx-u(1)=0 (d^2u(x)/dx^2)→u(x)をxで二階微分 u(x)→xを変数とする関数(固有関数) λ→固有値 という問題をλが正の時、0の時、負の時にわけて解きたいのですが解き方がわかりません。 よろしければ教えて下さい。

みんなの回答

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

(d^2/dx^2) u(x) - λ u(x) = 0 線型微分方程式ですから、普通に 特性方程式 s^2 - λ = 0 を解いて、s = ±√λ から 基底解 u = e^(x√λ), u = e^(x√λ) が見つかります。 これより、一般解は u = A e^(x√λ) + B e^(-x√λ) (A, B は定数) です。 境界条件ヘ代入して、 (du/dx)[x=0] - u(0) = 0 より、A√λ - B√λ = 0、 (du/dx)[x=1] - u(1) = 0 より、(A√λ)e^(√λ) - (B√λ)/e^(√λ) = 0。 連立一次方程式を解いて、A, B が決まります。 λの符号で場合分けする理由がよく解りませんが、 λ = -L < 0 であれば、 u = A e^(xi√L) + B e^(-xi√L) = A {cos(x√L) + i sin(x√L)} + B {cos(x√L) - i sin(x√L)} = C cos(x√L) + D sin(x√L) (C, D は定数) と書くこともできるでしょう。 λ = 0 の場合は、特性根が重根になるので、 様相が異なりますね。 原式に戻って (d^2/dx^2) u(x) = 0 なので、 x で積分して、u = Ax+B (A,B は定数) です。 境界条件を満たす解は、A + (0+B) = 0, A + (A+B) = 0 で、 A = B = 0 ですね。

関連するQ&A

  • 偏微分方程式の解き方を教えていただけないでしょうか

    偏微分方程式の解き方を教えていただけないでしょうか。 u_t (tの一階微分) = u_xx (xの二階微分) x∈[0,1]のとき、 境界条件 u_x(0,t)=0 、u(1,t)=5t (↑xの一階微分) 初期条件が、 u(x,0)=0 自分で _____________________ du/dt = d^u/dx^2 x∈[0,1] du/dx(0,t)=0 、u(1,t)=5t u(x,0)=0 のとき、変数を分離して、 u=(X,Y) X''=-λXとしました。 X=c1 cos(√(λ) x) +c2 sin(√(λ) x) として、 X’=√(λ) *(ーc1 sin(√(λ) x) +c2 cos(√(λ) x) ) 境界条件をいれると、 X’(0)=√(λ) *(ーc1 sin(√(λ) 0) +c2 cos(√(λ) 0) ) より c2=0 X(1)=c1 cos(√(λ)*1) +c2 sin(√(λ)*1) =5t c1*cos(√(λ)*1) =5t ____________________________ と計算をしてみたのですが、5tの扱い方がわからず、躓いてしまいました。 どのように計算をすればよいか、教えていただけないでしょうか。

  • 連立微分方程式

    du/dx = xv dv/dx = -xu u(0)=0,v(0)=1 の連立微分方程式が与えられていて、P(u,v)の軌跡をuv平面上に描け。 という問題なのですが、どう解けばよいのでしょうか。 変数を1変数にすると、 d/dx ((1/x )*du/dx) = -xu になると思うんですが、これって解けましたっけ?解けるならそれまでなんですけど。。 よろしくお願いします。。

  • 絶対値を含む2階微分方程式

    |du/dx| -1 = ε d^2u/dx^2 u(±1) = 0 x∈(-1,1) ε>0 を満たす(C2級)関数uを求めよという微分方程式初期値問題です。 分からないところ ・du/dxに付いた絶対値の取り扱い ・とりあえず絶対値無しで解こうとしたとき、εによって場合分けが必要になってくるのかどうか? 0<ε<1/4のとき、ε=1/4のとき、ε>1/4の時でそれぞれ会が違ってくるという方法で進めていって本当にいいものかどうか? なお、この初期値問題を満たすuはただ一つしかないことを示せというのが付属していますが、こちらは無くても構いません。 よろしくお願いします。

  • 微分積分の問題について

    微分積分についての質問です 以下の問題がわかりません。解答よろしくお願いします<(_ _)> 1.u=f(x,y) v=g(x,y)のとき次を示せ。 1)d(u+v) = du+dv 2)d(uv)=v du +u dv 2.1)p(≧3)変数の関数に対して、全微分可能性と全微分を定義せよ。 2)u=x^2+y^2+z^2の全微分duを求めよ。 答えだけでなくその過程もよろしくお願いします!

  • 偏微分の問題です

    偏微分の問題です 数学の中間試験の過去問で疑問にぶち当たりました。 u=x+y v=x-2y のとき、du/dx dx/du を求めなさいという問題なのですが、(dは全てラウンドディーです)答えではそれぞれ1と2/3となっています。1つ目の式のyを定数とみてdu/dxが1というのは分かります。また、yに二つ目の式を代入し、変形してから偏微分すると、2/3に確かになります。しかし、一つ目の式をx=u-yと変形してdx/du=1ではダメなのでしょうか。 このように、2つ式が与えられたときに、dx/duまたは、du/dxが何を定数とみなして偏微分するかによって値が異なってしまうとおもいます。上の場合では、xをuとvの式であらわしてvを定数とみなして偏微分する場合と、xをuとyの式であらわしてyを定数とみなして偏微分する場合とでは答えが変わります。 どうしたらいいのか見当もつきません。どうか皆様ご教授ください。 以下問題を添付します。

  • 微分方程式の偏微分問題について

    微分方程式の偏微分問題について 大学で微分方程式の授業を履修しているのですが、指定された問題がまったくわかりません 問u0>0,p>1とする。次の1階単独ODEの初期値問題について、(u0の0は小文字でユーゼロです) du/dt=u^p (t>0) u(0)=u0 u(t)が発散する時刻をTmaxとするとき、解u=u(t) (0<t<Tmax)を求めよ という問題です。 偏微分の計算の説明を少しされただけなので、このような文章問題はどうすればいいのかまったくわかりません。 一応この問題の前に 『1階単独ODEの初期値問題と局所解の一意存在定理』 2変数関数f(x,y)は点(x0,y0)の近くで偏微分できて、さらにその偏導関数fx(x,y),fy(x,y)は連続とする(これは短く「点(x0,y0)の近くで連続微分可能である」という)。そのとき、次の1階単独ODE y´=f(x,y), (y=y(x);unknown) について、y(x0)=y0をみたす解がx=x0の近くでただ1つ存在する という定理が書いてありましたが、説明されていないので自分で読むだけではまったく理解できませんでした。 明日までなので焦っています。 どなたか問題を解いて下さる方はいらっしゃいませんでしょうか?

  • 微分方程式について

    L(U)=d^2U/dx^2 - U =0(0<x<1) 境界条件U(0)=0 U(1)=1 この微分方程式を1次元2次要素を用いて解くという問題がわかりません。 お願いします。教えてください。

  • 微分方程式について

    次のような微分方程式があります d^2 x/dx^2 - (dy/dx)(4+x)/x +y*(6+2x)/x^2 =0 問題は以下です y=ux^2(uはxの関数)がこの微分方程式の解となるために uの満たすべき微分方程式を求めなさい。 要は u''=u'=u になればいいということじゃないのでしょうか ですがこれだと微分方程式になりません もしくはこれが解答でいいのでしょうか? ヒントのみでもいいので教えてください。

  • 微分方程式 1階線形

    y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 という問題なのですが一応解いてみたのですが合っているのかいまいち分かりません。 間違っている箇所があれば教えてください。 よろしくお願いします。 ↓ y’/y^3-2/x・1/y^2=x 1/y^2=uとおくと、 du/dx=du/dy・dy/dx du/dx=(-2/y^3)・y’ du/dx=-2y’/y^3 となりますから、 y’/y^3=-1/2 du/dx よって、元式に代入すると、 -1/2 du/dx-2/x u=x …(1) 定数変化法を用いる。斉次形の解をまず求める -1/2 du/dx-2/x u=0 du/dx=-4u/x ∫du/u=-4∫dx/x ln|u|=-4ln|x|+C1 u=±e^(-4ln|x|+C1) u=Cx^(-4) Cがxの関数であったものとして、非斉次形の解を求める。 C=p(pはxの関数)とおくと、 du/dx=p’x^(-4)-4px^(-5) ですから、(1)にそれぞれ代入して、 -1/2 {p’x^(-4)-4px^(-5)}-2/x px^(-4)=x -1/2 p’x^(-4)+2px^(-5)-2px^(-5)=x -1/2 dp/dx=x^5 ∫dp=-2∫x^5 dx p=-1/3 x^6+C 従って、 u=(-1/3 x^6+C)x^(-4) u=-1/3 x^2+Cx^(-4) となるから、1/y^2=uより、 1/y^2=-1/3 x^2+Cx^(-4)

  • 微分方程式の解について

    すべての点で微分可能な関数u(x)が次の条件を満たしている。   u(x)=u(-x)+2x …(1) かつ u(x)u'(x)+u(-x)u'(-x)=6x^2+2 …(2) このとき、関数u(x)を求めよ。 という問題に次のように解答したのですが、答えに自信がありません。合っているのでしょうか。 [解答1] (2)より [{u(x)}^2]'+[{u(-x)}^2]'=12x^2+4 {u(x)}^2+{u(-x)}^2=4x^3+4x+C (1)より、u(-x)=u(x)-2x、これを上の式に代入して {u(x)}^2+{u(x)-2x}^2=4x^3+4x+C 2{u(x)}^2-4xu(x)-4x^3+4x^2-4x+D=0 {u(x)}^2-2xu(x)-2x^3+2x^2-2x+E=0 u(x)=x±√(2x^3-x^2+2x+E) [解答2] (1)より、u(-x)=u(x)-2x、これと(2)式より u(du/dx)+(u-2x){(du/dx)-2}=6x^2+2 2(u-x)(du/dx)-2u+4x=6x^2+2 (u-x)(du/dx)-u+2x=3x^2+1 u-x=tとおくと (du/dx)-1=(dt/dx)より、(du/dx)=1+(dt/dx) t{1+(dt/dx)}-t=3x^2-x+1 t(dt/dx)=3x^2-x+1 tdt=(3x^2-x+1)dx (1/2)t^2=x^3-(1/2)x^2+x+C t^2=2x^3-x^2+2x+D u-x=±√(2x^3-x^2+2x+D) u(x)=x±√(2x^3-x^2+2x+D)