• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:にゃんこ先生といいます、文字のおきかえの背景)

文字のおきかえの背景と取りうる範囲の求め方

eatern27の回答

  • eatern27
  • ベストアンサー率55% (635/1135)
回答No.2

cos(nθ)=f_n(cosθ) となるようなn次多項式f_nを使うと、 sin(nθ) =cos(π/2-nθ) =f_n(cos(π/2n-θ)) となりますから、例えばt=cos(π/2n-θ)とおけばいいですね。

nyankosens
質問者

お礼

ありがとうございます。cos(nθ)=f_n(cosθ)はチェビシェフ多項式となるのですね。

関連するQ&A

  • フーリエ係数

    画像のような波形信号のフーリエ係数を求めるときは [0-π]の範囲ではf(t)=4sin(t)で、[π-2π]の範囲ではf(t)=0として計算すればよいのでしょうか? そうすると計算式は積分範囲は[0-π]で a0=(1/π)*∫4sin(t)dt, an=(1/π)*∫4sin(t)*cos(nt)dt, bn=(1/π)*∫4sin(t)*sin(nt)dt, となるのでしょうか? また、周期2πで、[-π,π]において、f(t)=π-|t|、で表わされる関数f(t)のフーリエ係数は a0=π, an=(2/n)*(cos(nπ)-sin(nπ)), bn=0, になったのですが(計算があってるかはわかりません) フーリエ級数を求めるには、この後どうすればいいのでしょうか? よろしくお願いします。

  • この問題の採点をお願いします。

    tは0< t <πを満たす実数とする。 a[n]は数列です。 a[1] = cos t/2 a[n] = a [n-1](cos t/2^n) (n= 2, 3, ・・) のときに、a[n]をtを用いて表せ。 ------- いま 0< t <π, n≧2より, 0 < t/2^n <π/2^2=π/4より、0 < cos t/n^2である。 0< t/2 <π/2より 次に、a[1] = cos t/2 > 0である。つまり正、したがって、a[2] > 0となる。順次、この議論を 繰り返せば、帰納的にa[n] > 0である。 次に与式の対数(底はe)を取る n≧2のとき log a[n] = log a[n-1] + log cos t/2^n log a[n-1] = log a[n-2] + log cos t/2^(n-1) ・・ log a[2] = log a[1] + log cos t/2^2 上記を足し算すれば、log a[n] = log a[1] + log cos t/2^2 + ・・ + log cos t/2^(n-1) + log cos t/2^n log a[n] = log cos t/2 ・cos t/2^2 + ・・cos t/2^(n-1) ・cos t/2^n となる。 ---------------b ここで、 cos t/2 = sin t /2sin t/2 cos t/2^2 = {sin 2・t/4} / { 2sin t/4 }・・ cos t/2^n = {sin t/2^(n-1)} / {2sin t/2^n} となり、上記に代入して、分子分母を消去すると、a[n] = sin t / {2^n sin t/n^2} となる。 一応最後の答えは一致したのですが、不安なのが、-----------bより下の部分です。 やっぱり、cos t/2^n = 2sin t/2^n cost/2^n/ 2sin t/2^n を帰納法で証明したほうがいいですか?

  • 三角比の相互関係

    sin^3θ+cos^3θ=-1のときsinθ+cosθの値を求めよという問題なんですが、解説をみると「sinθ+cosθ=√2sin(θ+(π/4))から-√2≦t≦√2に注意。」と書いてありました。これってどうやって導いたのですか?計算過程を解説していただけるとありがたいです。 (sinθ=a,cosθ=b,sinθ+cosθ=t)

  • 定積分の値

    ∫cosφ*exp(A*cosφ+B*sinφ) dφ ∫sinφ*exp(A*cosφ+B*sinφ) dφ いずれも積分範囲は-π~+π この積分を計算することは可能でしょうか?

  • 三角関数の問題です。

    次の問題をどう解けばいいのかわかりません。 途中計算式と詳しい解説をお願いします。 (1) sin(x/3)=1, x= a.π/6 b.π/2 c. 2π/3 d. 3π/2 (2){1-sin^(2)t}/cost = a. cos^(2)t b. cost c. sin^(2)t d. sint

  • 三角関数の合成と最小値について

    『0°≦θ≦90°のとき、sinθ+√3cosθの最小値を求めよ』という問題が分からないでいます。 以下に途中までの考え方を書きます。(解答は1です) sinθ+cosθを合成して文字を1種類にすると、 (与式)=2sin(θ+π/3) 0°≦θ≦90°は0≦sinθ≦1だから、不等式は 0≦2sin(θ+π/3)≦1 0≦sin(θ+π/3)≦1/2 θ+π/3=tとおくと、 0≦sint≦1/2 0°≦θ≦90°は0≦θ≦1/2πだから、、 0≦sin(θ+π/3)≦1/2π π/3≦θ+π/3≦(1/2+1/3)π π/3≦θ+π/3≦5/6π ここまでは考えつき、次にtの範囲を調べれば良さそうなのはなんとなく想像はつくのですが、具体的にどう続きを持っていけば良いのか困っています。 ご回答どうぞよろしくお願いいたします。

  • 簡単な力学の連立方程式が解けません……

    お世話になります。 物理(力学)を20年ぶりに勉強してみたのですが、恥ずかしながら 簡単な連立方程式が解けません。解答を読んでも理解 できなかったため、無知を忍んで質問させていただきます。 鉛直方向:T(1)sin45°+T(2)sin45°=mg……A 水平方向:T(1)cos45°=T(2)cos45°……B が成立している時の、T(1)、T(2)の値を求める計算ロジックが解りません。 模範解答にはさらっと sin45°=cos45°=1/√2 ですから、AとBを解いて T(1)=T(2)=(mg)/√2 となると記載されていますが、何度計算しても理解できません。 sin45°=cos45°=1/√2となるのは理解できるのですが……。 大変お恥ずかしいですが、AとBの連立方程式からT(1)、T(2)を求める 計算方法をご教示願えませんでしょうか? どうぞ、宜しくお願いいたします。

  • 定積分の結果に辿り着かせて下さい

    定積分の結果に辿り着かせて下さい。 概要 f_p(t) = { sin^2 t (0<=t<π) = { 0 (π<=t<2π) のフーリエ級数の f_s(t) = c_0 + Σ[n=1,∞] a_n cos nt + Σ[n=1,∞] b_n sin nt のb_nの定数を求めようとしています。 (本からの抜粋) b_m = (1/π) ∫[0,π] (sin t)^2 * sin mt dt (m = 1,2,3,...) の被積分関数は (sin t)^2 * sin mt = (1/2) sin mt - (1/4) {sin (2+m)t - sin (2-m)t} と書き直せるので、定積分することにより { b_m = 0 (mが偶数のとき) { b_m = - 4 / (πm(m^2 - 4)) (mが奇数のとき) が得られる。 …とありますが、計算間違いをしているのか、後一歩で辿り着けません。 私の計算 (1/2) ∫[0,π] sin mt dt - (1/4) {∫[0,π] sin (2+m)t dt - ∫[0,π] sin (2-m)t dt} =(1/2) [(1/m) (-cos mt)][0,π] - (1/4) { [(1/(2+m)) (-cos (2+m)t)][0,π] - (1/(2-m)) (-cos (2-m)t)][0,π] } =(-1/2m) [cos mt][0,π] - (1/4) { (-1/(2+m)) [cos (2+m)t][0,π] + (1/(2-m)) [cos (2-m)t][0,π] } =(-1/2m) [cos πm - cos 0] - (1/4) { (-1/(2+m)) [cos (2π+πm) - cos 0] + (1/(2-m)) [cos (2π-πm) - cos 0] } =(-1/2m) [cos πm - cos 0] - (1/4) { (-1/(2+m)) [cos πm - cos 0] + (1/(2-m)) [cos πm - cos 0] } =(-1/2m) [(-1)^(2m-1) - 1] - (1/4) { (-1/(2+m)) [(-1)^(2m-1) - 1] + (1/(2-m)) [(-1)^(2m-1) - 1] } =[ (-1/2m) - (1/4) { (-1/(2+m)) + (1/(2-m)) } ] * [(-1)^(2m-1) - 1] =[ (-1/2m) - (1/4) { (1/(2-m)) - (1/(2+m)) } ] * [(-1)^(2m-1) - 1] =[ (-1/2m) - (1/4) { (2+m)/{(2-m)(2+m)} - (2-m)/{(2-m)(2+m)} } ] * [(-1)^(2m-1) - 1] =[ (-1/2m) - (1/4) { (2+m-2+m)/(2-m)(2+m) } ] * [(-1)^(2m-1) - 1] =[ (-1/2m) - (1/4) { (2m)/(4-m^2) } ] * [(-1)^(2m-1) - 1] …とりあえず、ここまで合っていますでしょうか? 合っていたら、 { b_m = 0 (mが偶数のとき) { b_m = - 4 / (πm(m^2 - 4)) (mが奇数のとき) まで導いて下さい。 途中で計算間違いがあったらご指摘下さい。 お願いします。

  • (1)a=[1 1 ]

    (1)a=[1 1 ]     [0 1 ]としたとき,a^nをいくつかのnで計算して,一般のn(正負とも)について,その形を証明せよ。 (2)b=[1 1 1]     [0 1 1]     [0 0 1] としたとき,b^nをいくつかのnで計算して,一般のn(正負とも)について,その形を証明せよ。 (3)c=[1 1 1 1]    [0 1 1 1]     [0 0 1 1]    [0 0 0 1]としたとき,c^nをいくつかのnで計算して,一般のn(正負とも)につい     て,その形を証明せよ。 (4)D=[cosφ  -sinφ]     [sinφ   cosφ]としたとき,D^nをいくつかのnで計算して,一般のn(正負とも)につい     て,その形を証明せよ。 (5)G=[cosθ   sinθ]     [sinθ  -cosθ]としたとき,G^nをいくつかのnで計算して,一般のn(正負とも)につい     て,その形を証明せよ。 (1)については,a^n=[1 n]        [0 1 ]がわかり,数学的帰納法で,a^n+1のときも出したのですが,証明の書き          方に自信がありません。 (2)については,b^2=[1 2 3 ]c^3=[1 3 6 ]        [0 1 2 ] [0 1 3]        [0 0 1 ] [0 0 1]という風に,b^4,b^-1,b^-2,b^-3あたりを計算したのですが,規則性がどうしてもわかりません。 (3)についても,c^2=[1 2 3 4]c^3=[1 3 6 10]        [0 1 2 3] [0 1 3 6]        [0 0 1 2] [0 0 1 3]        [0 0 0 1] [0 0 0 3]という風に,c^4,c^-1,c^-2,c^-3あたりを計算したのですが,規則性がどうしてもわかりません。 (1)は,証明(数学的帰納法)の書き方を,(2)(3)については,一般のnを,(4)(5)については,最初から教えてもらえませんか。よろしくお願いします。        

  • 3sin(2x) のフーリエ展開

    「3sin(2x) を [-π,π]でフーリエ展開しなさい。」という問題があったのですが、                  ∞ フーリエ級数 (1/2)*a_0 + Σ[ a_n*cos(nx) + b_n*sin(nx) ]                  n = 1 のa_0 とa_n と b_n について、     π a_0 =∫3sin(2x) = 0     -π      π a_n =∫3sin(2x)cos(nx) = 0 (3sin(2x)cos(nx)は偶関数だから0)     -π  と、ここまでだしたのですが、どうしても次の、     π b_n =∫3sin(2x)sin(nx) = 0     -π  を求めることができません。このb_nの求め方を教えてください。 そもそもこれはフーリエ級数で表すことができるのでしょうか?