• ベストアンサー

線形写像の問題です。

三次元ベクトルa∈R^3を固定する。 このとき、f:R^3→R^3をf(x)=(a,x)aと定めると、fは線形写像であることを示せ。 どなたか分かる方がいらっしゃったら教えて頂けないでしょうか? よろしくお願いします。

noname#209215
noname#209215

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

g:R3→R:x→(a,x), h:R→R3:s→sa, f(x)=h(g(x)) と考える。 g と h の線型性は定義より自明で、 線型写像の合成も線型である。

その他の回答 (1)

回答No.1

(a,x)は内積の事と推察しますが、線形写像の定義に従って f(x,y)=f(x)+f(y)とf(cx)=cf(x) (cはスカラー)を示せば良いだけでは。

関連するQ&A

  • 線形写像と線形変換

    線形写像と線形変換 V , W をK上のベクトル空間とする。このときベクトル空間Vからベクトル空間Wへの写像fが、 Vの任意の要素x,yに対してf(x+y)=f(x)+f(y),f(kx)=kf(x)を満たすとき、fをVからWへの線形写像と言う。 これが線形写像の定義です。 別の記載では、R^n,R^mをk上のベクトル空間とする。このときベクトル空間R^n からベクトル空間R^m への写像f がR^nの任意の要素x,yに対して f(x+y)=f(x)+f(y),f(kx)=kf(x)を満たすとき、fを R^n からR^m への線形写像という。 ここで、テキストにはfがVからV自身への線形写像である時fを線形変換と呼ぶと記載されているのですが、 「VからV自身への線形写像」のイメージがあまりつきません・・・ 次元が同じ場合であれば線形変換?と思ったのですが間違いでしょうか? よろしくお願い致します。

  • 線形写像

    aをある平面ベクトルとし、任意の平面ベクトルxに対してaとxの内積(a,x)を与える写像をfとする。このときfはR^2からRへの線形写像であることをしめしたいのですがどう証明したらいいのかわからないです。

  • 線形写像の問題です。

    線形写像の問題です。 V:n次元実ベクトル空間 線形写像f:V→V f^k:k回写像 とするとき (1)任意の自然数kに対して Imf^(k+1)⊂Imf^k を示せ (2)dimImf^k=1⇒f^(k+1)=cf^k (cは実数)を示せ (1)はImf^kの元からkerf^(k+1)の元を引いて、fで写像させるとImf^(k+1)だからなのはわかるんですが、どのように証明を書いたらいいですか? (2)1次元の写像は1次元または0という意味ですよね? 任意にn次元ベクトルxをとる。 dimImf^k=1より、 f^kは行ベクトルで (a,0,…,0) (転置ベクトルで書いている)と表せる。 f^(k)x=(ax,0,…,0)となる これをfで写像すると、Imf^(k+1)は1次元または0次元になっていないようにしか思えないんですが… よろしくお願いします。

  • 線形写像の問題を教えて欲しいです。

    n次元Rベクトル空間Vおよび線形写像φ:V→Vについて φの行列表現Aについて、detA≠0ならばφは線形同型写像であることを示せ 全射は分かったんですが、単射の示し方が分かりません。 詳しく教えて欲しいです。

  • 線形写像、ランクの問題について説明お願いします。

    線形写像、ランク の問題及び解答があるのですが、解答が理解できないので教えてください。 -----例題--------  n個の実数 a1, a2, ・・・、an を固定する。R^n のベクトル x で、その成分 x1,x2,・・・、xn が方程式            a1x1 + a2x2 + ・・・ + anxn = 0 をみたすようなものの全体を W とするとき、W の次元を決定せよ。 -----解答--------- 写像 f: R^n → R を      f (ベクトル x ) = f t (x1, x2, x3,..., xn) = a1x1 + ・・・ + anxn (ftのtはf の転置行列の印)             によって定義すると、これは線形写像である。そして、W = Ker f に他ならない。 もしもすべての ai が 0 の場合は明らかに W = R^n であるから、dim W = n である。  もしも ai のうち1つでも 0 でないのがあると、写像 f は全射になるから、線形写像の基本定理から      dim W + dim R = dim R^n = n したがって      dim W = n - 1 -------解答終わり------- という例題解答があるのですが、なぜ dim W = n - 1 となるのか、つまり、 なぜ dim R = 1 となるのかがわかりません。 説明をよろしくお願いします。

  • 線形写像と線形変換

    線形写像と線形変換 以前、同様の題目で質問させて頂きました。 前回の質問内容:http://okwave.jp/qa/q5940429.html 線形写像と線形変換についての違いは理解出来たのですが、 分からない点があるので新規で質問させて頂きます。 線形写像の定義を表す場合、 R^n,R^mをR上のベクトル空間とする。 ベクトル空間R^n からベクトル空間R^m への写像f がR^nの任意の要素x,yに対して f(x+y)=f(x)+f(y),f(kx)=kf(x)を満たすとき、fを R^n からR^mへの線形写像という。 k∈Rである。 上の記述では何か間違っている点はありますでしょうか? n次元ベクトル空間はR^nとよく表記されているのを目にします。 Rは実数を表すイニシャルだと認識しています。しかし、kは複素数や虚数でも成り立つと 思うのでk∈Rと言う表現は正しくないのでは?と考えた次第です。 定数倍を表す場合は別の基礎体を考えなければならないと言う事でしょうか? 基礎体はRではなくKとして表記した方が正しいでしょうか? また、次元を表すnやmに関してはn,mは実数を前提として基礎体をRとしているので わざわざn,m∈Rと表記する必要は無いと考えているのですが、n,m∈Rも表記した方が 良いのでしょうか? 初歩的な質問で大変恐縮ですがご回答よろしくお願い致します。 初歩的な質問ですいません・・・よろしくお願い致します。

  • 線形写像について

    教科書や参考文献を見ても、線形写像のことがわかりやすく書かれてありません。しかし、問題としては、かなりのウェイトで出てくるのです。そこでですが、f:R^3→R^4,f([x,y,z,w])=[x-y+z+w,x+2z-w,x+y+3z-3w]の線形写像の像と核の基底と次元の求め方を教えてください。

  • 線形写像

    R[x]3→R[x]3 への写像Tが T(f)=xf'(x)+f(1)x で定義されているときにTが線形写像であるかどうか調べる。 という問題なんですけど、教科書にやり方がのってないので、まるっきしわかりません。 分かる方いらっしゃいましたらお願いします。

  • 線形写像の例を探しています。

    Fベクトル空間Vの線形写像全体の集合をV'と表す事にする(体FはC又はRとする)。 つまり、V'の元はVからFへの線形写像。 PをF上の多項式全体の集合, C[0,1]を区間[0,1]で連続な関数全体の集合, R^3を3次元実数空間 に於いて、P'やC[0,1]'やR^3'の元としてどのような例が挙げられますでしょうか?

  • 線形写像について

    次の写像は線形写像か?という問題で T(f(x))=2f'(x)+3f(x)というのがあって 答えに「線形写像でない」と書いてあるのですが理由がわかりません。 教えてください。お願いします。