太陽系の距離に応じて、惑星の半径はどう変化するのか?

このQ&Aのポイント
  • この文章では、惑星の密度や距離によって惑星の半径がどのように変化するかについて説明されています。
  • ρは惑星の密度を表し、Lewisによると4.45g/cm^3であるとされています。
  • 太陽からの距離の増加に伴い、惑星の半径は減少します。また、この文章では、4次のルンゲ-クッタ-ギル法を用いて軌道計算が行われています。
回答を見る
  • ベストアンサー

この文章の和訳をお願いします。

  Furthermore, ρ is the density of the planet and is taken to be 4.45g/cm^3 according to Lewis. The values of r_p/h are tabulated in Table I for various regions from the Sun. It is to be noticed that the planetary radius decreases as the increase in the distance from the Sun in the system of units adopted here.   Orbital calculations are performed by means of the 4th order Runge-Kutter-Gill method with an accuracy of double precision. よろしくお願いします。

  • 英語
  • 回答数2
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • ddeana
  • ベストアンサー率74% (2976/4019)
回答No.2

また、 ρ は惑星の密度であり、ルイスにより 4.45g/cmの3乗とみなされている。太陽からの様々な領域についての r_p/hの値は表1で一覧にしている。本稿で採用した単位系では、太陽からの距離が増加するにつれて惑星の半径が減少することに留意されたい。 軌道計算は4次ルンゲ・クッタ・ギル法(※1)を用いて倍精度(※2)の正確さで行われる。 ※1:数値解析において計算機を使用し、微分方程式を解く方法のうちもっとも知られている方法が4次ルンゲクッタ(Runge-Kutta)法を、係数を変化させることにより改良した計算方法のことです。 ※2:コンピューターの数値表現の一つで、誤差がより少なくなるとお考えください。

stargazer1231
質問者

お礼

わかりやすくありがとうございました。

その他の回答 (1)

回答No.1

さらに、ρは惑星の密度であり、ルイスによれば、4.445g/cm^3と推定されている。太陽からの様々な領域(or距離)に対して、r_ρ/hは表1で示されている。ここで採用されている単位系で、惑星の直径は、太陽からの距離が増加するにしたがい、減少することが知られている。 4次のルンゲークッターギル法によって倍精度で、軌道計算はなされる。 くらいの意味ですかね。

stargazer1231
質問者

お礼

ありがとうございました。

関連するQ&A

  • この文章の和訳をお願いします。

    It should be noticed that when δ*=0 the perigee of a purely Keplerian orbit lies on the x-axis. For the orbital calculations, b_i~ is taken in the range between -10 to 10 and δ* is varied from -π to π. When |b_i~| is about 10, the perigee distance from the planet is larger than several times the Hill radius. Thus, the particle is hardly scattered and keeps almost the same orbital elements as the initial during the encounter. When |b_i~| is as small as 6, however, a particle begins to interact with the planet appreciably only in the vicinity of δ*=0 and the orbital elements are slightly changed. よろしくお願いします。

  • この文章の和訳をお願いします。

                    3. Results of the orbital calculations   In this paper, we describe our numerical results only for the special cases e_i~=0 and e_i~=4 in order to find the characteristic features of the two-body encounters of Keplerian particles. 3.1. For the case e_i~=0   In this case the orbital element, δ_i, loses its meaning because the particle orbits have no periheria and , hence, we can actually assign the initial condition by one parameter, b_i~. The orbital calculations are performed for about 3800 cases with various values of b_i~ from -10 to 10. よろしくお願いします。

  • この文章の和訳を教えてください。

    In order to see qualitatively the collision frequency, we will define the collision probability, P_c(b_i~) as follows. For a fixed value of b_i~, orbital calculations are made with N's different value of δ*_i, which are chosen so as to devide 2π(from –π to π) by equal intervals. Let n_c be the number of collision orbits, then P(b_i~, N)=n_c/N gives the probability of collision in the limit N→∞. In practice, however, we can evaluate the value of P_c(b_i~) approximately, but in sufficient accuracy in use, by the following procedures; i.e., at first for N=N_1(e.g., N_1=1000), P(b_i~,N_1) is found and, next, for N=2N_1, P(b_i~,N) is reevaluated. お手数ですが、どうかよろしくお願いします。

  • この文章の和訳を教えてください。

      We start our orbital calculation of a particle from a point far from the planet where the effect of the gravitational force of the planet can be neglected. At an initial point where a particle is governed almost completely by the solar gravity, the particle orbit can be approximated in a good accuracy by the Keplerian. Hence we will give the initial conditions for the orbital calculation in terms of the Keplerian orbital elements (a_i, e_i, ε_i, δ_i) in place of (x, x’, y, y’), where a, e and ε are the semi-major axis, the eccentricity and the mean longitude at t=0, respectively. Furthermore the parameter δ is defined as                    δ=-nt_0,             (2・8) where n and t_0 are the mean angular velocity and the time of the perihelion passage, respectively. よろしくお願いします。

  • この文章の和訳をよろしくお願いします。

    3. Examples of orbital calculations To find efficient numerical procedures for obtaining <P(e ,i)>, we have made detailed orbital calculations for two typical cases, (e, i)=(0, 0) and (1, 0.5). The former is the simplest case with a single parameter b, and corresponds to that studied by Giuli (1968), Nishida (1983) and Petit and Hénon (1986). In the latter, the orbit changes with three parameters b, τ, and ω in a complicated manner. From this example, we can see the characteristic features of orbits in the three-dimensional case. In the present examples, it is supposed that a protoplanet with a mean mass density 3gcm^-3, orbits in the Earth’s region. Furthermore, we adopt 1% as the limiting accuracy criterion for use of the two-body approximation. These give 0.005 and 0.03 for the radius of the protoplanet and that of the two-body sphere, respectively (see Eqs. (12) and (13)). よろしくお願いします。

  • この文章の和訳をお願いします。

    Now, the orbital elements (e, i, b, τ, ω) appearing in Eq. (14) are those at infinity. However, we cannot carry out an orbital calculation from infinity. In practice, we start to compute orbits from a sufficiently large but finite distance. Hence, we have to find the relation between orbital elements at infinity and those at a starting point. For b, it is readily done by Eq. (17); denoting quantities at a starting point of orbital calculations by subscripts “s”, we obtain b_s=(b^2-8/r_s)^(1/2), ・・・・・・・・(19) where we assumed e_s^2=e^2 and i_s^2=i^2 in the same manner as earlier. Hénon and Petit (1986) obtained a more accurate and complicated expression of b_s in the two-dimensional case. However, since we are now interested only in the averaged collisional rate but not detailed behavior of orbital motion, it is sufficient to use the simple relation (19). よろしくお願いします。

  • この文章の和訳を教えてください。

    In our orbital calculations, the starting points are assigned in the form (see Eq. (7)) x_s=b_s-ecos(t_0-τ_s), y_s=y_0+2esin(t_0-τ_s), ・・・・・・・・・・・(21) z_s=isin(t_0-ω_s), where t_0 is the origin of the time, independent of τ_s and ω_s, and y_0 is the starting distance (in the y-direction) of guiding center. Table 1. The values of b_min* evaluated from Eq. (18). The values of numerically found b_min are also tabulated. よろしくお願いいたします。

  • この和訳をおしえて下さい。

    In order to see qualitatively the collision frequency, we will define the collision probability, Pc(bi~) as follows. For a fixed value of bi~, orbital calculations are made with N's different value of δ, which are chosen so as to devide 2π(from -πto π) by equal intervals. Let n_c be the number of collision orbits, then P(bi~, N)=n_c/N gives the probability of collision in the limit N→∞. In practice, however, we can evaluate the value of Pc(bi~) approximately, but in sufficient accuracy in use, by the following procedures; i.e., at first for N=N1(e.g., N1=1000), P(bi~,N1) is found and, next, for N=2N1, P(bi~,N) is reevaluated. よくわからないのでよろしくお願いします。

  • この文章の和訳をお願いします。

    2. Initial conditions for orbital integration To obtain <P(e, i)>, we must numerically compute a number of orbits of planetesimals with various values of b, τ, and ω for each set of (e, i) and then examine whether they collide with the protoplanet or not. In this section, we consider the ranges of b, τ, and ω to be assigned in orbital calculations, and give initial conditions for orbital integration. One can see in Eq. (6) that Hill’s equations are invariant under the transformation of z→-z and that of x→-x and y→-y; on the other hand, a solution to Hill’s equations is described by Eq. (7). From the above two characteristics, it follows that it is sufficient to examine only cases where 0≦ω≦π and b≧0. Furthermore, we are not interested in orbits with a very small b or a very large b; an orbit with a very small b bends greatly and returns backward like a horse shoe ( Petit and Hénon, 1986; Nishida, 1983 ), while that with a very large b passes by without any appreciable change in its orbital element. どうかよろしくお願いします。

  • この文章の和訳をお願いします。

    3.2. Case of e=1.0 and i=0.5 In the three-dimensional case, the orbit is characterized by three parameters b, τ_s, and ω_s (in this section, we will omit the subscript “s” describing a starting point of orbital calculations). Recalling that b_max<3.7 from Eq. (16) and b_min>1.3 from Eq. (18) in the present case, we first examine orbits with b in the range between 1.3 and 3.7: Phase space (b, τ, ω) is divided into about 22000 meshes, i.e., 24 in b (1.3~3.7), 60 in τ (-π~π), and 15 ω (0~π). These orbital calculations show that there is no collision orbit where b<1.5 and b>3.2: b_max and b_min are set at 3.2 and 1.5, respectively, rather than 3.7 and 1.3. In parallel with the argument in the previous subsection, we consider the minimum separation r_min between the protoplanet and the planetesimal. In Fig.7, contours of r_min in the first encounter are illustrated in the τ-ω diagram for the three cases of b=2.3 (Fig. 7a), 2.8 (b), and 3.1 (c). Each figure is compiled from the orbital calculations of 5000 orbits, i.e., the τ-ω plane is divided into 100 (in τ)×50 (in ω). We concentrate first on Fig. 7a. In the coarsely dotted region where r_min>1, particles cannot enter the Hill sphere of the protoplanet. Such regions are beyond our interest. In the other regions where particles can enter the Hill sphere, r_min varies with τ and ω in a complicated manner. In particular, near the points (τ, ω)=(-0.24π,0.42π) and (-0.26π, 0.06π), r_min varies drastically in a small area in the τ-ω diagram. These may be chaotic zones. But in almost all regions, r_min varies continuously with τ and ω, and in this sense the orbits are regular. The finely dotted regions show those in which r_min becomes smaller than 0.03 (the radius of the two-body).Such orbits will be called close-encounter orbits in the chaotic zones is very small compared with that in the regular zones. This is the same conclusion as reached earlier. 長文ですが、どうかよろしくお願いします。