• ベストアンサー

一次変換

定義1:平面上の点P(x,y)から点P'(x',y')への変換fが次の条件を満たす。 f:{x'=ax+by {y'=cx+dy (a,b,c,dは定数) 定義2:任意のベクトルx,yと定数αに対して変換fが次の2つの条件を満たす。 (1)f(x+y)=f(x)+f(y) (2)f(αx)=αf(x) 定義1は定義2を満たすことを示せ。 また、定義2は定義1を満たすことを示せ。 証明するような問題は苦手で、どうしたらいいのか全く分かりません。 どなたか教えていただけないでしょうか? 詳しく解説していただけると有難いですが、解くためのヒントなどでも良いので、お願いします。

  • ggmam
  • お礼率93% (15/16)

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

定義1 と定義2 で文字 x, y の用途が違うことは、頭が混乱するもとになりがち。 定義2 の方の文字を換えとこう。 定義2: 任意のベクトル u, v と定数 α に対して変換 f が次の2つの条件を満たす。 (1)f(u+v) = f(u) + f(v) (2)f(αv) = αf(v) さて、定義1 ⇒ 定義2 は… u = (x1,y1), v = (x2,y2), f(u+v) = (x',y') と置くと、 x' = a(x1+x2) + b(y1+y2) = (ax1+by1) + (ax2+by2), y' = c(x1+x2) + d(y1+y2) = (cx1+dy1) + (cx2+dy2) であるから、f(u,v) = f(u) + f(v). 成分ごとに計算して、後でベクトルにまとめた訳。 定義2 ⇒ 定義1 は… e1 = (1,0), e2 = (0,1), f((x,y)) = (x',y') と置くと、 (x',y') = f((x,y)) = f(xe1+ye2) = xf(e1) + yf(e2). f(e1) = (a,c), f(e2) = (b,d) と置けば、 x' = ax+by, y' = cx+dy になっている。

ggmam
質問者

お礼

回答ありがとうございます。 文字を換えたら分かりやすくなりました! まだ何となくですが、分かってきました(^^)

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

例えば f: x' = 2x + 4y, y' = x - 3y が定義 2 を満たすことは証明できますか?

ggmam
質問者

補足

回答ありがとうございます。 恥ずかしながら、どうしたら証明できるのか見当もつきません(;_;) まず、どうして定義を満たしているのかも分かりません。

関連するQ&A

  • 連立1次方程式AX=Pは図形的にどういう意味がある?

    平面上に2つの直線があるとき、その交点を求めることは、 2つの2元一次方程式を連立して解くことに対応します。 さらに、連立1次方程式 ax+by=p cx+dy=q は,行列を用いて, (a b)(x)=(p) (c d)(y) (q) と書くことができます。 行列をA,ベクトルをそれぞれX,Pと置くと、 AX=P となります。 http://www.geisya.or.jp/~mwm48961/kou2/linear_eq1.html を参照しました。 さて、行列Aは一次変換を表していると考えることが出来ます。 平面上の点Xが、その一次変換で点Pに移ると考えることができると思います。 それはもとの2つの直線とその交点と照らし合わせて、どういう意味があるのでしょうか?

  • 線形変換の定義について

    線形変換の定義について 線形変換の定義 [1] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K, について常に f(ax+by) = a f(x) + b f(y) が成り立つもの。 [2] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a∈K について常に f(x+y) = f(x) + f(y), f(ax) = a f(x) が成り立つもの。 [3] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K について a+b=1 のとき f(ax + by) = a f(x) + b f(y), f(ax) = a f(x) が成り立つもの。 がすべて同値であることを示したいのですが、どのようにすればよいでしょうか?

  • 形変換 アフィン変換 

    形変換 アフィン変換  前回同様の内容で質問させて頂きました。 不明な点がいくつかありますので改めて質問させて頂きます。 前回の質問内容:http://okwave.jp/qa/q5957715.html アフィン変換 ⊃ 線型変換 であるとご回答頂いたのですが、これはアフィン変換は 線形変換を含むという認識で良いでしょうか? 線形変換はアフィン変換の部分集合だと理解したのですが間違いでしょうか? また、線形変換及びアフィン変換の定義に関して ・線型変換の定義: [1]  体 K 上のベクトル空間 V 上の変換 f で、  x,y∈V, a,b∈K, について常に f(ax+by) = a f(x) + b f(y) が成り立つもの。 ・アフィン変換の定義: [2]  体 K 上のベクトル空間 V 上の変換 f で、  x,y∈V, a,b∈K, について a+b = 1 のときは f(ax + by) = a f(x) + b f(y)  が成り立つもの。 とご教示頂きました。 定義[1],[2]について考えると、 [1]が成り立てば、[2]は成り立つと思います。 [1]はa+b=1によらず、f(ax+by)=af(x)+bf(y)が成り立ちますから。 翻って、[1]ならば[2]が成り立つと言うことは線形変換がアフィン変換を含むと 言う事になりませんか?この点で混乱しています・・・ ご回答よろしくお願い致します。

  • 線形変換の定義

    線形変換の定義 前回の質問で線形変換とアフィン変換について質問させて頂きました。 前回の質問内容:http://okwave.jp/qa/q5973471.html 線形変換とアフィン変換については理解する事が出来ました。 ご回答下さった方本当にありがとうございます。 線形変換の定義を幾つか示して頂いたのですが、 線型変換の定義: [1] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K, について常に f(ax+by) = a f(x) + b f(y) が成り立つもの。 線型変換の定義: [1’] [1']?体 K 上のベクトル空間 V 上の変換 f で、?x,y∈V, a∈K について常に?f(x+y) = f(x) + f(y),? f(ax) = a f(x) が成り立つもの。 線形変換の定義:[1''] ?体 K 上のベクトル空間 V 上の変換 f で、?x,y∈V, a,b∈K について a+b=1 のとき?f(ax + by) = a f(x) + b f(y),? f(ax) = a f(x) が成り立つもの。 定義[1] ⇔ [1'] ⇔ [1''] が同値であることはどのように示せば良いのでしょうか? また、定義[1'']におけるa+b=1とは具体的に何を示しているのでしょうか? ご回答よろしくお願い致します。

  • 線形変換

    行列AをA= (2,-1) (1,4) で定義する。 行列Aによって表されるxy平面上の線形変換をfとする。直線y=ax上の任意の点のf による像が同じ直線y=ax上にあるようなaの値を求めよ。 という問題で、y=axはベクトルを使うと (1) (a) と表せるから、これの左側にAをかけて、 (2-a) (1+4a) となり、(2-a):(1+4a)=1:a という比例式から (a+1)^2=0 ∴a=-1 が出てきました。このような解き方でいいでしょうか?

  • 行列 1次変換

    次の平面上の変換は1次変換か否かを調べ、1次変換であるもの については、1次変換を表す行列を求めよ。 (1)平面上の任意の点Pに点Pを対応させる変換(恒等変換) (2)点P(x、y)をx軸方向に2、y軸方向に-1だけ平行移動した点を P’(x’、y’)とする変換 (3)点P(x、y)を原点を中心に角π/3だけ回転させた点をP’(x’、y’) とする変換 この三つの問題なんですが (1)は恒等変換なので (x’)=(1 0)(x)=(x) (y’)=(0 1)(y)=(y)  (2段で書いていますが1段と考えて) でよいですか? あとの二つはわかりません。お願いします。

  • 線形代数の問題がわかりません。

    線形代数の問題です。 1)点p1,p2,p3,qが次のように与えられている。 p1=(2 0 3),p2=(0 1 3),p3=(1 1 4),q=(2 2 1) 1)3点p1,p2,p3を含む平面Fの方程式を求めよ。 2)点qから1)で求めた平面Fまでの最短距離を求めよ。 3)一般に3次元空間の点xへの距離が最短となる平面F上の点をyとする。y=Ax+bと表す時、行列Aとベクトルbを求めよ。 1)は計算してF:x+2y-z+1=0 2)は垂線の足をHとするとQH=(-1 -2 1)となり、長さは√6 3)はy-xとp1-p2,p1-p3の内積が0になるということはわかりますがyにAx+bを代入する?のでしょうか? このへんの処理が謎です。 x=(x1 x2 x3)と置いてみましたが、A,bをすべて文字で表すと手が付けられなくなりそうです。 わかる方よろしくお願いします。

  • 線形変換の定義 証明

    線形変換の定義 証明 以前ご回答頂き理解したつもりだったのですが・・・ 実際に自分で証明を試みましたが出来ませんでした。 理解出来ていなかったので再々度質問させて頂きます。 重複質問で申し訳ないですm(_ _)m 線形変換の定義 [1] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K, について常に f(ax+by) = a f(x) + b f(y) が成り立つもの。 [2] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a∈K について常に f(x+y) = f(x) + f(y), f(ax) = a f(x) が成り立つもの。 [3] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K について a+b=1 のとき f(ax + by) = a f(x) + b f(y), f(ax) = a f(x) が成り立つもの。 *****以下質問内容***** [1]と[3]が同値であることの証明は理解できたのですが、 [1]と[2]が同値であることを証明できません。 [1]と[2]が同値であることの証明 [1]の定義に従い、[2]を示す。 ・x,y∈V,a,b∈Kにおいてa=b=1∈Kとおくと  x,y∈V,1∈K→f(ax+by)=f(1*x+1*y)=1*f(x)+1*f(y)=f(x)+f(y)=f(x+y) ・x,y∈V,a,b∈Kにおいてy=0∈V,b=0∈Kとおくと  x,0∈V,a,0∈K→f(ax+by)=f(ax+0*0)=f(ax)+0*f(0)=f(ax)=af(x) [2]の定義に従い、[1]を示す。 ・x,y∈V,a∈Kにおいて  f(x+y)がf(ax+by)=af(x)+bf(y)となる事が示せません・・・  そもそも、a∈Kでbはどこからでてくるのでしょうか? [1]→[2],[2]→[1]であるなら、[1]と[2]は同値であると示せると 思うのですが、[2]→[1]はどのようにすれば示せるのでしょうか? お手数ですが、ご回答よろしくお願い致します。

  • 高校数学の行列の1次変換の問題です

    行列(1/5,2/5,p,q)で表さられる平面上の1次変換fが原点を通るある直線l上への正射影となるように実数p,qの値を定め、直線lの方程式を求めよ 基本的な事がよく分かったいないですが、どうかよろしくお願いします、チャートは読んだのですが・・・ 解説はまず、直線x=0上への正射影の行列は(0,0,0,1)であるから不適とあります、この(0,0,0,1)が何故 x=0上への正射影の行列になるのかと、これが何故駄目なのかを教えてください その後よってl;y=ax上への正射影を考えれば良いとあります、これも何でなのか良くわかりません (続き) l上の任意の点(x,ax)はfで不変であるから (x',y')=(1/5,2/5,p,q)(x,y)=(x,ax) よってx=x/5+2ax/5=x これが任意の実数xに対して成り立つから a=2,よってl:y=2x(1) 次に平面上の任意の点P(x,y)の像P' (x',y')=(1/5,2/5,p,q)(x,y)=(x/5+2y/5,px+qy)は(1)上に あるからpx+qy=2(x/5+2y/5) これが任意の実数x,yに対して成り立つからp=2/5,q=4/5(必要条件) 逆にこのとき=(-4/5,2/5,2/5,-1/5)(x,y)=,↑PP'=(A-E)↑OP1/5(2x-y)(-2,1)⊥(1,2)であるから とあるのですが↑PP'が(A-E)↑OP1/5(2x-y)(-2,1)に何でなるのかと特に(A-E)↑OPの所です、それが(1,2)に垂直になるのが何故か教えてください (続き)よってfは正射影である(十分条件) p=2/5,q=4/5

  • 線形代数の線形変換などに関する問題を教えて下さい

    線形変換に関する問題なのですが、わからなくて困っています。全部で三問です。 回答お願いします。 1) 次の行列を表現行列とする線形変換について平面全体の像を求めよ i (11) ii (31) (12) (a2)         二行二列の行列です 2)線形変換fにより平面上のすべての点がy=x上の点にうつるとき、fの表現行列の条件を求めよ (3)fの表現行列が(a -1) のとき直線l: x+y=1の像がl上の点となるような定数aを求めよ。          (3 2) 是非回答お願いします。