関数f(x)=[sinx]のグラフ

このQ&Aのポイント
  • 関数f(x)=[sinx]のグラフについて質問があります。
  • f(x)=[sinx]のx=π/2での連続・不連続を調べる問題について、添付されたグラフを使用して説明します。
  • 関数f(x)=[sinx]はx=π/2で不連続であると考えられますが、アドバイスをお願いします。
回答を見る
  • ベストアンサー

関数f(x)=[sinx]のグラフ

お世話になっております。ただいまパソコンの調子が良くないため、質問させていただきます。 タイトルの通りの関数のグラフですが、大変汚くて申し訳ありませんが、添付したもので良いでしょうか? 因みに問題としては、f(x)=[sinx]のx=π/2 での連続・不連続を調べるものですが、私のやり方としては、xの多項式のガウス記号を含む関数と同じようにして(多分)、 -1≦sinx≦1より 0≦x<(π/2)⇒f(x)=0 x=π/2 ⇒f(x)=1 (π/2)<x<π⇒f(x)=0 として添付したようなグラフにしました。仮にこれで良ければ、lim[x→(π/2)±0]f(x)=0ですが、f(π/2)=1 ですから、 lim[x→(π/2)]f(x)≠f(π/2) となって、x=π/2 では、f(x)は不連続と言えそうなのですが、如何なものでありましょうか。アドバイス宜しくお願い致します。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

質問者様のグラフは正しいですよ。 ただし理由付けに「-1≦sinx≦1より」とするのは雑なので、 0≦x<(π/2)または(π/2)<x≦π ⇒ 0≦sinx<1 ⇒ f(x)=0 x=π/2 ⇒ sinx=1 ⇒ f(x)=1 と書くのがよいと思います。 ちなみにお分かりかとは思いますがπ<x<2πの区間も考えるのであれば、この範囲のxについては[sinx]=(-1)となります。

dormitory
質問者

お礼

なるほど。 簡潔ですね!しかし、三角関数の値の推移がきちんと頭に入ってないと書けない説明ですから、私ももっと鍛えなくちゃいけないと勝手に励まされてます。 ご回答ありがとうございました。

関連するQ&A

  • sinx/x グラフ

    f(x)=sinx/xのグラフを書くとx=0は定義できない様なのですがこれはなぜでしょうか? lim[x→0]sinx/x=1は理解できます。 xを限りなく0に近づけた場合sinx/xは1に収束します。 では、なぜsinx/xはx=0で定義できないのでしょうか。 x=0とxを限りなく0に近づけると言う事は同じではないのですか? 以上ご回答よろしく御願い致します。

  • f(x)=x^3はx=0で連続か不連続か

    『lim[x→a]f(x)=f(a)⇔f(x)がx=aで連続』 の⇒向きの話について疑問を感じます。 たとえば、 『f(x)=x^3はx=0で連続か不連続か。』 という問題で、解答は、 『lim[x→0]f(x)=0、f(0)=0より、 lim[x→0]f(x)=f(0)であるからf(x)はx=0で連続である。』 とかって書いてあるんですが、lim[x→0]f(x)=0っていうのはf(x)にx=0を代入して出しているのではないのでしょうか? (建前上は、)y=x^3のグラフから極限値を調べた、ということなんでしょうか? まぁ、この問題は本当に基礎の問題だからこのように書いてあるわけで、実際の問題では、多項式などは連続関数なのが自明だから、そこからはlim[x→a]f(x)=f(a)を使って求める、ということなのかな?と思ったんですが、どうなのでしょうか?

  • 連続関数は関数記号と極限記号を入れ替えられる

    連続関数であれば関数記号(fのこと)と極限記号(limのこと)を入れ替えることができる事を 以下のように示したのですがあっていますか。 (証明) 関数f(x)がx=aで連続 ⇔lim[x→a]f(x)=f(a) このときlim[x→a]x=aであるので lim[x→a]f(x)=f(a) ⇔lim[x→a]f(x)=f(lim[x→a]x) よって連続関数であれば関数記号と極限記号を入れ替えること ができる (証了)

  • x^m (mはm≦-1を満たす整数)を含む関数f(x)は多項式でない理由について

    インターネット等で調べてみたのですが見当たらないので質問です。 『x^m(mはm≦-1を満たす整数)を含む関数f(x)は多項式でない理由』とこういった項を含む式の『○○式』等といった呼び方(あれば)を教えてください。 また某pediaを参照すると『f(x)=0という多項式f(x)の次数を-∞と定義する。』とあったのですが、次数が+∞の多項式は存在するのでしょうか? f(x)=sinxはxで微分しても、第n次導関数において次数が0にならないためsinxは多項式ではない。と説明しているページも見かけたので正直混乱しています。どなたか教えてください。

  • lim[x→0](sinx)/x=1 の厳密な証明、sinxの定義

    高校の教科書では、 0<x<π/2のとき,面積を考えて、 (sinx)/2<x/2<(tanx)/2 2をかけて、辺々の逆数を取ると, cotx<1/x<cosecx 辺々にsinxをかけると, cosx<sinx/x<1 lim[x→0]cosx=1 挟み撃ちの原理より,lim[x→0]sinx/x=1 と書かれています。 これを出発点として、(sinx)'=cosxが分かり、三角関数の微積分が構築されます。 しかし、面積は厳密には、積分で定義され、微積分学の基本定理から、微分の逆演算として計算されます。 すると、面積を用いて、lim[x→0](sinx)/x=1を証明するのは循環論法。 lim[x→0](sinx)/x=1 の厳密な証明を、sinxの定義とともに教えてください。

  • 三角関数(たとえばf(x)=sinxとか)の連続性を証明したいんですけ

    三角関数(たとえばf(x)=sinxとか)の連続性を証明したいんですけど、一週間くらい悩んでてもなかなか思いつかなくて・・・ 問題的に、 微分可能⇒連続 を使うのではなく、ε-δ論法で示すってことだと思うんですけど。 いちおう自分の力で示したいので、解答ではなくヒントを教えてもらいたいです。

  • 連続関数とそのグラフ

    f(x)=lim(x^(2n-1)+x^2+ax+b)/x^(2n)+1 n→∞ が連続関数であるとき (1)定数a,bの値を求めよ。 (2)関数y=f(x)のグラフの概形をかけ。

  • f(x)+∫f(t)=sinxのときf(x)は?

    関数f(x)は微分可能でf(x)は連続としf(x)は関係式 f(x)+∫[0~x]f(t)=sinx の式を満たしている。という問題です。(1)~(4)は解けたつもりです。しかし。 (1)f(x)+f´(x)の関係式は?――――f(x)+f´(x)=cosx (2)(d/dt)f(x)e^xを求めよ。――――(d/dt)f(x)e^{x}=e^{x}(f(x)+f´(x))=e^{x}cosx (3)∫[0~x]e^{t}(sint+cost)=∫[0~x]e^{t}(sint-cost)+e^{x}(sinx+cosx)-1の証明 (4)∫[0~x]e^{t}costを求めよ。――――∫[0~x]e^{t}cost=[e^{x}(sinx+cosx)-1]/2 (5)f(x)は? という問題です。(1)~(4)は解けたつもりです。しかし(5)が解けません。(1)~(4)をどう使えばいいの?

  • 三次関数f(x)を求めてください

    二つの式を満足する三次関数を求めてください lim{f(x)/(x-1)}=8 x→1 lim{f(x)/(x^2-1)}=2 x→-1 よろしくお願いします

  • 関数f(x)=(sinx)^3は極値をもつか。

    数3の学習をしています。 関数f(x)=(sinx)^3は極値をもつか。 という問題についてです。 模範解答には、f'(0)=0 , f''(0)=0であることを示してかつ、 x=0の前後でf'(x)の符号が変わらないことも示して、 x=0で極値をもたない、という結論になっています。 そこで質問なんですが、x=0の前後でf'(x)の符号が変わらないことを示す必要があるのはどうしてでしょうか。 f'(0)=0 , f''(0)=0である時点で、x=0で極値をもつことはないと思うのですが…。 この間数に限らず、f'(0)=0 , f''(0)=0なのに、x=0で極値をもつ場合って、どんな場合なんでしょう? よろしくお願いします。