• ベストアンサー

円関数の問題(高校数学)

k3ericの回答

  • k3eric
  • ベストアンサー率38% (8/21)
回答No.2

(1) POからの延長線と円の交点をQとすると ∠PQBは ∠POBと 円周角と中心角の関係になっています。 よって ∠PQB = (1/2) ✕ 120 = 60 △PQBの正弦定理より sin60 = (a/2r), ∴ 2rsin60 = a (2) △PQAを考えるとPQは半径だから∠QAPは 90 なので斜辺 2r の直角三角形になる。 ∠AQP = (1/2) ✕ 2θ = θ だから ∴AP = 2r ✕ sin θ 同様に△PQBを考えると ∠POB = 120 - 2θ なので ∠PQB = (1/2) ✕ (120 - 2θ) = 60 - θ ∠PBQ = 90、斜辺 2r だから ∴PB = 2r ✕ sin(60 - θ) ∴AP + BP = 2r sin θ + 2r sin(60 - θ)

lover0
質問者

お礼

ばっちり理解することができました。 非常に良い解答ありがとうございました!

関連するQ&A

  • 円、おうぎ形の問題

    次の問題の解答がさっぱりわからなくて困っています。 板書を任せられているので、正確な解答をしていただけるとありがたいです。 長さ4の線分ABについて、2点A、Bを中心にそれぞれ半径4の円をかき、 交点の1つをPとする。 (1)△ABPに内接する円O1、BPを弧とするおうぎ形ABPに内接する円O2について (円O1の半径)=ア√イ/ウ、(円O2の半径)=エ/オ (円O1の面積):(円O2の面積)=1:カ/キ であり、 円O1の中心をO1、円O2の中心をO2とすると O1O2=ク-ケ√コ/サ である。 (2)線分AB、弧AP、弧BPのすべてに接する円O3の中心をO3とすると sin∠O3AB=シ/ス であり、 △O3ABの外接円O4の半径はセソ/タチである。 また、点A´が円O4の周上にあるとすると、△O3A´Bの面積の最大値は ツテ/トナ である。 ちなみに、O1の半径→1/2・4・4・sinA=1/2r(4+4+4)よりr=2√3/3  までは求めました。

  • 数学の問題です。

    △ABCにおいてAB=AC=3、BC=2とする。 このとき cos∠BAC=7/9、sin ∠BAC=4√2/9である。 △ABCの外接円の中心をO、半径をRとするとR=9√2/8である。 (1)外接円Oの点Cを含まない弧AB上に点PをAP=PBとなるようにとる。   線分OPと辺ABの交点をHとすると   OHは?   APは? (2)外接円Oの点Bを含まない弧AC上に点QをAQ=QCとなるようにとり、線分BPの延長と線分QAの   延長との交点をSとする。   ∠PBA=θとおく。次の五個の角のうち、その大きさが2θであるものの個数は?個である。   ∠SPA ∠ABC ∠BCA ∠CAP ∠PAS   そして SA=?、SQ=? である。   さらに、点Sから円Oに接線を引き、その接点をTとすると   ST=?   である。 多くてすみません。 宜しくお願い致します。

  • 半径rの円で、定弦AB(=2k)がある。

    半径rの円で、定弦AB(=2k)がある。 円周上の動点PがAP×BP=2r(r-√(r^2-k^2)) となるとき、点Pの位置を求めよ。 点A(r,0)とする。点B(rcosβ,rsinβ) 点P(rcosα,rsinα)とおいて、 (AP・BP)^2=4r^4(1-cosα)(1-cos(β-α)) ここからの処理に行き詰まりました。 よろしくお願いします。

  • 円、おうぎ形の問題(難問です)

    次の問題の解答がさっぱりわかりません。 よろしくお願いします。 長さ4の線分ABについて、2点A、Bを中心にそれぞれ半径4の円をかき、 交点の1つをPとする。 (1)△ABPに内接する円O1、BPを弧とするおうぎ形ABPに内接する円O2について (円O1の半径)=ア√イ/ウ、(円O2の半径)=エ/オ (円O1の面積):(円O2の面積)=1:カ/キ であり、 円O1の中心をO1、円O2の中心をO2とすると O1O2=ク-ケ√コ/サ である。 (2)線分AB、弧AP、弧BPのすべてに接する円O3の中心をO3とすると sin∠O3AB=シ/ス であり、 △O3ABの外接円O4の半径はセソ/タチである。 また、点A´が円O4の周上にあるとすると、△O3A´Bの面積の最大値は ツテ/トナ である。

  • 円、おうぎ形の問題(難問です)

    次の問題の解答がさっぱりわからなくて困っています。 よろしくお願いします。 長さ4の線分ABについて、2点A、Bを中心にそれぞれ半径4の円をかき、 交点の1つをPとする。 (1)△ABPに内接する円O1、BPを弧とするおうぎ形ABPに内接する円O2について (円O1の半径)=ア√イ/ウ、(円O2の半径)=エ/オ (円O1の面積):(円O2の面積)=1:カ/キ であり、 円O1の中心をO1、円O2の中心をO2とすると O1O2=ク-ケ√コ/サ である。 (2)線分AB、弧AP、弧BPのすべてに接する円O3の中心をO3とすると sin∠O3AB=シ/ス であり、 △O3ABの外接円O4の半径はセソ/タチである。 また、点A´が円O4の周上にあるとすると、△O3A´Bの面積の最大値は ツテ/トナ である。

  • 高校数学ベクトルの問題です。

    (2)がよくわかりません。  各辺の長さが1で底面ABCDが正方形である四角錐O-ABCDがある。辺OBの中点をP、辺ODをt:(1-t) (0<t<1)に内分する点をQとし、平面APQと辺OCの交点をRとする。 (1)↑AR を↑AP、↑AQ、t を用いて表す。 (2) 四角形 APRQ の面積を t で表す。 (1)AR↑= ( 2t/(1+t) )AP↑+ (1/(1+t))AQ↑ は解けました (2)解法の方針  (1)の結果よりAP'↑=2*AP↑ となる点P'を考える。  四角形 APRQ の面積は△AP'Q の面積から△PP'R の面積を引けば求められる。また、△AP'Q と△PP'R の面積比が t を使った比で表せることから△AP'Q の面積を求めて比を使って四角形の面積を計算する。  まず △PP'Q と △AP'Q、△PP'R の面積比を求める。  △AP'Q と △PP'Q の面積比は 2:1 と簡単なのですが、△PP'Q と △PP'R の面積比がよくわかりません。

  • 数学を教えてください

    AB=6,BC=5.CA=4であるとき△ABCにおいて∠Aの二等分線と辺BCの交点をPとしたとき線分BPと線分APの長さを求めなさい。  答えBP=3、AP=3√2 この問題の途中式を教えてください。ちなみにcos∠B=3/4、△ABCの面積S=15√7/4、△ABCの内接円の半径r=√7/2です

  • 重積分の問題なのですが・・・。

    重積分の問題なのですが・・・。 ∬(y-6)(x^2+y^2)^(1/2)dxdy 積分区間はx^2+y^2<=4です。 x=rcosθ, y=rsinθとおいて、積分区間の条件より 0<=r<=2, 0<=θ<=2πとおける さらにこのときdxdy=rdrdθとなる 与式=∫[o<-2π]∫[0<-2]{rsinθ-6)(r^2cos^2θ+r^2sin^2θ)^(1/2)}rdrdθ   =∬{(rsinθ-6)r^2}drdθ   =∫[1/4sinθr^4-2r^3](0<-2)dθ   =∫(4sinθ-16)dθ   =[-4cosθ-16θ](0<-2π)   =(-4-32π)-(-4)   =-32π とマイナスになってしまいました、どこが間違えているのでしょうか? すみませんがよろしくお願いします。

  • 数学の問題

    図(写真参照)のように中心Oとする半径5cmの円周上に点A、半径6の円周上に点B、Cがある。O、A、Cは一直線上に並んでおり、角BOC=30度である。点Pは点Aを出発地点として毎秒2πの早さで半径5cmの円を進んでおり、点Qは点Bを出発点として毎秒4πの速さで半径6の円周上を動く。点Pと点Qは同時に出発したとする。 問題1 出発した時から、点Pが左回転、点Qが右回転をし続けた時O、P、Q、の順番で同一直線上に並ぶのは何秒後か。 問題2出発した時から点Qが左回転を続けたとき、点Cに初めてたどり着くのは何秒後か。 問題3出発した時から、点P、Qがともに左回転を続けた時、O、P、Qの順で3点が同一直線上に並ぶのは何秒後か。

  • 数学の問題です。教えてください!

    Oを原点とする座標平面上に、半径がすべてrである(rは正の定数)である 3つの円C1,C2,C3がある。円C1,C2の中心はそれぞれO、A(-6、8)である。 また円C3は2つの円C1,C2に外接し、その中心Bは第一象限にある。 (1)円C1、C2が2点L、Mで交わり、LM=5であるときrの値と点Bの座標を求めよ。 (2)(1)のとき円C3の周上に動点Pをとる。    OPの二乗+APの二乗の最小値を求めよ。 外接している場合、どうやって求めればいいのでしょうか。 解き方と考え方が分かりません。 詳しい解説をよろしくお願いします!