• 締切済み

ヘッシアンが0になった場合

ヘッシアンが0になった場合。 ヘッシアンが0になった場合について質問します。 この場合具体的にどうすればいいんでしょうか。 いろいろ調べましたが 3次近似をするとか、候補の点の近くを適当に動いてみて考えるとか もっと高次の場合を考えるとか。 いろいろな回答が出てきましたが、 コレッ ていう考え方がわかりません。 ただ自分の知識不足なんですがね。 例題を載せますので、よろしければ詳しく教えて下さい。 f(x,y)=x^4+y^4-2x^2+4xy-2y^2の極値を求めよ fx=0 かつ fy=0 より 極値をとる点の候補を得る。(√2,-√2),(-√2,√2),(0,0) ここでヘッシアンを用いる H(x,y)=fxx*fyy-(fxy)^2 点(0,0)について H(0,0)=0 ここからどうすればいいでしょうか。 あとの2点は計算した所極値をもちました。 よろしくお願いします

みんなの回答

  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.1

f(x,y)=x^4+y^4-2x^2+4xy-2y^2 ∀ε>0に対して x=min(ε,1)/2 とすると 0<|(x,0)|=|x|<ε f(x,0)=x^4-2x^2=x^2(x^2-2)<0=f(0,0) 0<|(x,x)|=|x√2|<ε f(x,x)=2x^4>0=f(0,0) f(x,0)<f(0,0)<f(x,x) だから f(0,0)は極値でない

関連するQ&A

  • f(x,y)=x^2+y^4の極値

    こんばんは!! タイトルの通り、f(x,y)=x^2+y^4の極値を求めたいのですが、よく分かりません。。 まず私の解答ですが、、 fx(x,y)=2x, fy(x,y)=4y^3で停留点を求めると、2x=0かつ4y^3=0より(x,y)=(0,0)が停留点である。 また、 fxx(x,y)=2, fxy(x,y)=0, fyy(x,y)=12y^2 であり、(x,y)=(0,0)のとき、 A=fxx(x,y)=2, B=fxy(x,y)=0, H=fyy(x,y)=0 である。 よって AB-H^2=0 ここまではできたのですが、この先が分かりません。 参考書にはAB-H^2=0の場合が載っていないのです。。 上とは異なる解法でもいいので、もし分かる方がいらっしゃいましたら回答よろしくお願い致します!!

  • 極値の条件の証明

    何方かこの問題を教えてください。 関数f(x,y)が(a,b)でfx=0, fy=0となるとき Δ=fxy^2-fxx・fyy<0であればf(a,b)には極値であるがΔ>0であれば極値でない。このことをTaylorの定理を用いて示せ。

  • 2変数関数の極値の問題です。

    2変数関数の極値の問題です。 次の極値の問題について議論せよ。 f(x,y)=x^4-y^4 という問題で、fx=fy=0を満たす(a,b)でfxx=A,fxy=B,fyy=Cとおいて、極値判定法を考えましたが、この場合、(a,b)=(0,0)だけとなり、B^2-AC=0となって極値の判定ができませんでした。 この場合、どのような方法で示せばよいのでしょうか。 よろしくお願いします。

  • 微分の3次近似多項式について少し質問です><

    微分の3次近似多項式について少し質問です>< お願いします。 2次近似式の場合の公式は f(x,y)=f(0,0)+fx(0,0)・x+fy(0,0)・y+1/2!{fxx(0,0)・x^2+2fxy(0,0)・x・ y+fyy(0,0)・y^2} になると思うので、 3次近似式多項式の場合は上の公式に 1/3!{fxxx(0,0)・x^3+3fxxy(0,0)・x^2・y+3fxyy(0,0)・x・y^2+fyyy(0,0)・y^3}を加えれば良いですよね?? 少し不安だったので質問しました。間違っていたら教えてください。 ちなみに^2は二乗を、fxxなどをそれで(xで微分)したことを表します。 お願いします。

  • 問題が解けません誰か解法と答えを教えてください

    2変数関数f(x、y)=x^3-3x+3xy^2について (1)連立方程式fx(x、y)=fy(x、y)=0を解け (2)不等式fxx(x,y)fyy(x,y)-{fxy(x,y)}^2>0の表す領域を図示せよ (3)f(x,y)の極値を求めよ です、お願いします。

  • 2変数関数について・・・?

    2変数関数のz = f(x,y) = x^2 / (x^2 + y^2)の f(x,y),fx,fy,fxx,fxy,fyx,fyy、はどうなるのでしょうか?

  • 極値、最大最小問題

    f(x,y)=xy(x+y-1)について以下の問いに答えよ。 (1)x,yがx^2+y^2<1を満たすとき、f(x,y)の極値を求めよ。 (2)x,yがx^2+y^2≦1を満たすとき、f(x,y)の最大値、最小値を求めよ。 この問題でf(x,y)=xy(x+y-1)を偏微分してfx(x,y)、fy(x,y)、fxx(x,y)、fyy(x,y)、fxy(x,y)を求めて、(1)の極値を求めるために(x,y)=(a,b)で極値を取ると仮定してfx(a,b)=fy(a,b)=0を解いて極値の候補出そうとしたんですが、よくわかりません。どうしたらいいですか?もし解ける人がいましたら、解答orアドバイスお願いします。 解けなくて困っているんで、解ける人いましたらお願いします。

  • 誤差のO-記法 多変数の場合

    F(x,y)のテイラー展開をベクトルを用いずに表記した場合 F(x,y)= F(0,0) + [ Fx(0,0), Fy(0,0) ]・[ x, y ] + [ Fxx(0,0), Fxy(0,0), Fyy(0,0) ]・[ x^2, xy, y^2 ] + ... となりますが 例えばこの場合に二次のオーダーの誤差をO-記法で書く際には どのように書くのが正しいのでしょうか O(x^2,y^2) などと書いてよいのでしょうか

  • 2変数関数のテイラーの定理の問題について

    どうにか2変数関数のテイラーの定理の問題まで解き進めることができました。 ここまでこれたのも、こちらでご指導くださった皆様のおかげと大変感謝しております。まだまだ勉強不足ですが、引き続きご鞭撻のほど、よろしくお願いしまします。 2変数関数のテイラーの定理の問題を解いてみたのですが、 これであっているのか、ご指導いただければと思います。 特に(5)が自信ないです。 【問題】 次の2変数関数に、n=2の場合の「マクローリンの定理」を適用せよ。 ※2変数関数のマクローリンの定理 f(x,y)=f(0,0) +(1/1!){x・(δ/δx)+y・(δ/δy)} f(0,0) +(1/2!){x・(δ/δx)+y・(δ/δy)}^(2) f(0,0) +… +(1/(n-1)!){x・(δ/δx)+y・(δ/δy)}^(n-1) f(0,0) +(1/n!){x・(δ/δx)+y・(δ/δy)}^(n) f(θx,θy) (0<θ<1) ※2変数関数のマクローリンの定理(n=2の場合) f(x,y)=f(0,0)+{fx(0,0)+fy(0,0)y} +(1/2){fxx(θx,θy)x^(2)+2fxy(θx,θy)xy+fyy(θx,θy)y^(2)} (1) x+y f(x,y)=x+y f(0,0)=0 fx(x,y)=1 fx(0,0)=1 fy(x,y)=1 fy(0,0)=0 fxx(x,y)=0 fxx(0,0)=0 fxy(x,y)=0 fxy(0,0)=0 fyy(x,y)=0 fyy(0,0)=0 2変数関数のマクローリンの定理(n=2)を適用し、 f(x,y)=0+(0x+0y)+(1/2)(0x^2+2・0xy+0・y^2)=0 (2) x^2+y^2 f(x,y)=x^2+y^2 f(0,0)=0 fx(x,y)=2x fx(0,0)=0 fy(x,y)=2y fy(0,0)=0 fxx(x,y)=2 fxx(θx,θy)=2 fxy(x,y)=0 fxy(θx,θy)=0 fyy(x,y)=2 fyy(θx,θy)=2 2変数関数のマクローリンの定理(n=2)を適用し、 f(x,y)=0+(0x+0y)+(1/2)(2x^2+2・0xy+2y^2) =(1/2)(2x^2+2y^2) =x^2+y^2 (3) x^2+2xy+y^2 f(x,y)=x^2+2xy+y^2 f(0,0)=0 fx(x,y)=2x+2y fx(0,0)=0 fy(x,y)=2x+2y fy(0,0)=0 fxx(x,y)=2 fxx(θx,θy)=2 fxy(x,y)=2 fxy(θx,θy)=2 fyy(x,y)=2 fyy(θx,θy)=2 2変数関数のマクローリンの定理(n=2)を適用し、 f(x,y)=0+(0x+0y)+(1/2)(2x^2+2・2xy+2y^2) =(1/2)(2x^2+4xy+2y^2) =x^2+2xy+y^2 =(x+y)^2 (4) x^3+y^3 f(x,y)=x^3+y^3 f(0,0)=0 fx(x,y)=3x^2 fx(0,0)=0 fy(x,y)=3y^2 fy(0,0)=0 fxx(x,y)=6x fxx(0,0)=0 fxy(x,y)=0 fxy(0,0)=0 fyy(x,y)=6y fyy(0,0)=0 2変数関数のマクローリンの定理(n=2)を適用する。 ただし、3次式のため、fxx(x,y),fxy(x,y),fyy(x,y)までの計算とする。 f(x,y)=0+(0x+0y)+(1/2)(0・x^2+2・0xy+0・y^2)=0 (5) e^(x)・sin(y) f(x,y)=e^(x)・sin(y) f(0,0)=e^(0)・sin(0)=1・0=0 fx(x,y)=e^(x)・sin(y) fx(0,0)=e^(0)・sin(0)=1・0=0 fy(x,y)=e^(x)・cos(y) fy(0,0)=e^(0)・cos(0)=1・1=1 fxx(x,y)=e^(x)・sin(y) fxx(θx,θy)=e^(θx)・sin(θy) fxy(x,y)=e^(x)・cos(y) fxy(θx,θy)=e^(θx)・cos(θy) fyy(x,y)=e^(x)・(-sin(y))=-e^(x)・sin(y) fyy(θx,θy)=-e^(θx)・sin(θy) 2変数関数のマクローリンの定理(n=2)を適用し、 f(x,y)=0+(0x+1y) +(1/2)(e^(θx)・sin(θy)・x^2+2・e^(θx)・cos(θy)・xy-e^(θx)・sin(θy)y^2) =y+(1/2)e^(θx)(sin(θy)・x^2+2cos(θy)・xy-sin(θy)y^2) =y+(1/2)θ・e^(θx)(sin(y)x^2+2cos(y)xy-sin(y)y^2) =y+(1/2)θ・e^(θx)((x^2-y^2)sin(y)x^2+2cos(y)xy) 以上、よろしくお願いしたします。

  • 解き方がわかりません助けてください

    2変数関数f(x,y)=x^3-3x+3xy^2について。 (1)連立方程式fx(x,y)=fy(x,y)=0を解け。 (2)不等式fxx(x,y)fyy(x,y)-{fxy(x,y)}^2>0の表す領域を図示せよ。 (3)f(x,y)の極値を求めよ。 です。 まず(1)のfx(x,y)=fy(x,y)=0の段階からわかりませんfx(x,y)がどういう意味なのかが分かりません。 (2)は上と同じ要素でわからない&計算方法がわかりません。 (3)は(2)が解けないと解けないですよね?こちらも求め方を教えてください。 基本的に何をどうすれば解へとたどり着けるのかが分かっていないので、できれば詳しく解法を教えてください。