• ベストアンサー
  • すぐに回答を!

極値、最大最小問題

f(x,y)=xy(x+y-1)について以下の問いに答えよ。 (1)x,yがx^2+y^2<1を満たすとき、f(x,y)の極値を求めよ。 (2)x,yがx^2+y^2≦1を満たすとき、f(x,y)の最大値、最小値を求めよ。 この問題でf(x,y)=xy(x+y-1)を偏微分してfx(x,y)、fy(x,y)、fxx(x,y)、fyy(x,y)、fxy(x,y)を求めて、(1)の極値を求めるために(x,y)=(a,b)で極値を取ると仮定してfx(a,b)=fy(a,b)=0を解いて極値の候補出そうとしたんですが、よくわかりません。どうしたらいいですか?もし解ける人がいましたら、解答orアドバイスお願いします。 解けなくて困っているんで、解ける人いましたらお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数266
  • ありがとう数5

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.4

fx(x,y)=y(2x+y-1) fy(x,y)=x(x+2y-1) b(2a+b-1)=0 ... (1) a(a+2b-1)=0 ... (2) (1)より b=0 または b=-2a+1 (2)に代入すると {b=0 かつ a(a-1)=0} または {b=-2a+1 かつ a(-3a+1)=0} ゆえに (a,b)=(0,0),(1,0),(0,1),(1/3,1/3) x^2+y^2<1 の範囲だから (a,b)=(0,0),(1/3,1/3) あとはいいですね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 (1)はおかげで編微分で解けました。

その他の回答 (3)

  • 回答No.3

>どうしてもm^2-4n≧0の意味が良くわからないんです。これはどこから出てきたんですか? x+y=m、xy=nとすると、xとyは t^2-mt+n=0の2つの実数解です。 従って、判別式≧0です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 判別式だったんですね。 わかりました。

  • 回答No.2

>円周上の最大・最小はx=cosθ、y=sinθとして変数を1変数にすれば これは駄目です。円周上なら良いんですが、この不等式は円の周上と内部を表しているのですから。 どうしてもと言うなら、x=r*cosθ、y=r*sinθ (0≦θ<2π、0≦r≦1)としなければなりません。 従って、2変数の問題です。どちらを先に固定しても計算は面倒です。 方法は、x+y=m、xy=nとして、m^2-4n≧0、m^2-2n≦1の上で、mn平面上で 双曲線:k=n(m-1)のとり得る値の範囲として求まると思います。 やってみて下さい。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 これを参考に解いてみたんですが、どうしてもm^2-4n≧0の意味が良くわからないんです。これはどこから出てきたんですか?

  • 回答No.1
  • zk43
  • ベストアンサー率53% (253/470)

偏微分でまともに計算したら訳がわかんなくなってしまった。 とりあえず、これはx,yどちらか固定すると、2次関数なので、 f(x,y)=y{x+(y-1)/2}^2-y(y-1)^2/4 f(x,y)=x{y+(x-1)/2}^2-x(x-1)^2/4 と変形すると、 yを止めて、x軸方向にみると、x=-(y-1)/2で極大か極小 xを止めて、y軸方向にみると、y=-(x-1)/2で極大か極小 (止めるx,yの正負によって極大・極小が変わる。) であることがわかる。 x軸方向、y軸方向の極大、極小が一致するところを考えると、 x=-(y-1)/2とy=-(x-1)/2を同時に満たすx,yとして、x=y=1/3 1/3は正なので、ここで極小になる。 (1/3,1/3)はx^2+y^2<1の中にある。 また、f(x,y)はx,yに関して対称なので、x=y上で極大・極小になると 考えられる。 そこで、x=y=tとしてみると、 f(t,t)=t^2(2t-1)=2t^3-t^2 (d/dt)f(t,t)=6t^2-2t=0より、t=0,1/3 x=yの1方向だけ見ているので、(0,0),(1/3,1/3)が極点の候補になる。 (0,0)はfxx=0,fyy=0でだめでしょう。変曲している、馬の鞍型のような 曲面。 正当なやり方ではないので、どうでしょうか? エクセルで等高線グラフを描いて、どんな曲面になるか試してみては? 円周上の最大・最小はx=cosθ、y=sinθとして変数を1変数にすれば できないでしょうか。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 これは2変数をxの場合とyの場合でそれぞれ固定して考えるってことですよね? 数学苦手なんでちょっと初歩的なことかもしれないところがわからないんですが、x,yに関して対称ってどうしてすぐにわかるんですか?

関連するQ&A

  • f(x,y)=x^2+y^4の極値

    こんばんは!! タイトルの通り、f(x,y)=x^2+y^4の極値を求めたいのですが、よく分かりません。。 まず私の解答ですが、、 fx(x,y)=2x, fy(x,y)=4y^3で停留点を求めると、2x=0かつ4y^3=0より(x,y)=(0,0)が停留点である。 また、 fxx(x,y)=2, fxy(x,y)=0, fyy(x,y)=12y^2 であり、(x,y)=(0,0)のとき、 A=fxx(x,y)=2, B=fxy(x,y)=0, H=fyy(x,y)=0 である。 よって AB-H^2=0 ここまではできたのですが、この先が分かりません。 参考書にはAB-H^2=0の場合が載っていないのです。。 上とは異なる解法でもいいので、もし分かる方がいらっしゃいましたら回答よろしくお願い致します!!

  • 2変数関数のテイラーの定理の問題について

    どうにか2変数関数のテイラーの定理の問題まで解き進めることができました。 ここまでこれたのも、こちらでご指導くださった皆様のおかげと大変感謝しております。まだまだ勉強不足ですが、引き続きご鞭撻のほど、よろしくお願いしまします。 2変数関数のテイラーの定理の問題を解いてみたのですが、 これであっているのか、ご指導いただければと思います。 特に(5)が自信ないです。 【問題】 次の2変数関数に、n=2の場合の「マクローリンの定理」を適用せよ。 ※2変数関数のマクローリンの定理 f(x,y)=f(0,0) +(1/1!){x・(δ/δx)+y・(δ/δy)} f(0,0) +(1/2!){x・(δ/δx)+y・(δ/δy)}^(2) f(0,0) +… +(1/(n-1)!){x・(δ/δx)+y・(δ/δy)}^(n-1) f(0,0) +(1/n!){x・(δ/δx)+y・(δ/δy)}^(n) f(θx,θy) (0<θ<1) ※2変数関数のマクローリンの定理(n=2の場合) f(x,y)=f(0,0)+{fx(0,0)+fy(0,0)y} +(1/2){fxx(θx,θy)x^(2)+2fxy(θx,θy)xy+fyy(θx,θy)y^(2)} (1) x+y f(x,y)=x+y f(0,0)=0 fx(x,y)=1 fx(0,0)=1 fy(x,y)=1 fy(0,0)=0 fxx(x,y)=0 fxx(0,0)=0 fxy(x,y)=0 fxy(0,0)=0 fyy(x,y)=0 fyy(0,0)=0 2変数関数のマクローリンの定理(n=2)を適用し、 f(x,y)=0+(0x+0y)+(1/2)(0x^2+2・0xy+0・y^2)=0 (2) x^2+y^2 f(x,y)=x^2+y^2 f(0,0)=0 fx(x,y)=2x fx(0,0)=0 fy(x,y)=2y fy(0,0)=0 fxx(x,y)=2 fxx(θx,θy)=2 fxy(x,y)=0 fxy(θx,θy)=0 fyy(x,y)=2 fyy(θx,θy)=2 2変数関数のマクローリンの定理(n=2)を適用し、 f(x,y)=0+(0x+0y)+(1/2)(2x^2+2・0xy+2y^2) =(1/2)(2x^2+2y^2) =x^2+y^2 (3) x^2+2xy+y^2 f(x,y)=x^2+2xy+y^2 f(0,0)=0 fx(x,y)=2x+2y fx(0,0)=0 fy(x,y)=2x+2y fy(0,0)=0 fxx(x,y)=2 fxx(θx,θy)=2 fxy(x,y)=2 fxy(θx,θy)=2 fyy(x,y)=2 fyy(θx,θy)=2 2変数関数のマクローリンの定理(n=2)を適用し、 f(x,y)=0+(0x+0y)+(1/2)(2x^2+2・2xy+2y^2) =(1/2)(2x^2+4xy+2y^2) =x^2+2xy+y^2 =(x+y)^2 (4) x^3+y^3 f(x,y)=x^3+y^3 f(0,0)=0 fx(x,y)=3x^2 fx(0,0)=0 fy(x,y)=3y^2 fy(0,0)=0 fxx(x,y)=6x fxx(0,0)=0 fxy(x,y)=0 fxy(0,0)=0 fyy(x,y)=6y fyy(0,0)=0 2変数関数のマクローリンの定理(n=2)を適用する。 ただし、3次式のため、fxx(x,y),fxy(x,y),fyy(x,y)までの計算とする。 f(x,y)=0+(0x+0y)+(1/2)(0・x^2+2・0xy+0・y^2)=0 (5) e^(x)・sin(y) f(x,y)=e^(x)・sin(y) f(0,0)=e^(0)・sin(0)=1・0=0 fx(x,y)=e^(x)・sin(y) fx(0,0)=e^(0)・sin(0)=1・0=0 fy(x,y)=e^(x)・cos(y) fy(0,0)=e^(0)・cos(0)=1・1=1 fxx(x,y)=e^(x)・sin(y) fxx(θx,θy)=e^(θx)・sin(θy) fxy(x,y)=e^(x)・cos(y) fxy(θx,θy)=e^(θx)・cos(θy) fyy(x,y)=e^(x)・(-sin(y))=-e^(x)・sin(y) fyy(θx,θy)=-e^(θx)・sin(θy) 2変数関数のマクローリンの定理(n=2)を適用し、 f(x,y)=0+(0x+1y) +(1/2)(e^(θx)・sin(θy)・x^2+2・e^(θx)・cos(θy)・xy-e^(θx)・sin(θy)y^2) =y+(1/2)e^(θx)(sin(θy)・x^2+2cos(θy)・xy-sin(θy)y^2) =y+(1/2)θ・e^(θx)(sin(y)x^2+2cos(y)xy-sin(y)y^2) =y+(1/2)θ・e^(θx)((x^2-y^2)sin(y)x^2+2cos(y)xy) 以上、よろしくお願いしたします。

  • 極値の条件の証明

    何方かこの問題を教えてください。 関数f(x,y)が(a,b)でfx=0, fy=0となるとき Δ=fxy^2-fxx・fyy<0であればf(a,b)には極値であるがΔ>0であれば極値でない。このことをTaylorの定理を用いて示せ。

  • f(x,y)=xe^(xy+2y^2)の第1次及び第2次の偏導関数を求

    f(x,y)=xe^(xy+2y^2)の第1次及び第2次の偏導関数を求める問題で解答はfx=(1+xy)e^(xy+2y^2),fy=x(x+4y)e^(xy+2y^2),fxx=(2y+xy^2)e^(xy+2y^2), fxy={x+(1+xy)(x+4y)}e^(xy+2y^2),fyy={4x+x(x+4y)^2}e^(xy+2y^2)でそれぞれどのようにして微分されているのかを詳しく教えてください 特にfxxからまったく分からないので教えてください 回答よろしくお願いします。

  • f(x,y)=xe^(xy+2y^2)の第1次及び第2次の偏導関数を求

    f(x,y)=xe^(xy+2y^2)の第1次及び第2次の偏導関数を求める問題で解答はfx=(1+xy)e^(xy+2y^2),fy=x(x+4y)e^(xy+2y^2),fxx=(2y+xy^2)e^(xy+2y^2), fxy={x+(1+xy)(x+4y)}e^(xy+2y^2),fyy={4x+x(x+4y)^2}e^(xy+2y^2)でそれぞれどのようにして微分されているのかを詳しく教えてください fxxから本当に分からないので教えてください 回答よろしくお願いします

  • 高次(階)偏導関数の問題について

    高次(階)偏導関数の問題をどうにか解いてみたのですが、 あっているか自信がありません。特に(6)の問題。 わかる方、ご指導よろしくお願いします。 【問題】 次の関数f(x,y)の2次までの変動関数を求めよ。 (1) x^2+3xy+y^2+2 fx(x,y)=2x+3y fy(x,y)=3x+2y fxx(x,y)=2 fxy(x,y)=3 fyx(x,y)=3 fyy(x,y)=2 (2) log(x^2+y^2+1) d/dt log(t)=1/t δ/δx x^2+y^2+1=2x δ/δy x^2+y^2+1=2y 合成関数の微分の公式を適用し、 fx(x,y)=1/(x^2+y^2+1)*2x=2x/(x^2+y^2+1) fy(x,y)=1/(x^2+y^2+1)*2y=2y/(x^2+y^2+1) 商の微分の公式を適用し fxx(x,y)={(2*(x^2+y^2+1)-2x(2x)}/(x^2+y^2+1)^2=-2(x^2-y^2-1)/(x^2+y^2+1)^2 同様に計算し、 fxy(x,y)=-4xy/(x^2+y^2+1)^2 fyx(x,y)=-4xy/(x^2+y^2+1)^2 fyy(x,y)=2(x^2-y^2+1)/(x^2+y^2+1)^2 (3) e^(xy) d/dt log(t)=e^t δ/δx xy=y δ/δy xy=x 合成関数の微分の公式を適用し、 fx(x,y)=e^(xy)*y=y e^(xy) fy(x,y)=e^(xy)*x=x e^(xy) fxx(x,y)=y e^(xy)*y=y^2 e^(xy) fxy(x,y)=y e^(xy)*x=xy e^(xy) fyx(x,y)=x e^(xy)*y=xy e^(xy) fyy(x,y)=x e^(xy)*x=y^2 e^(xy) (4) e^(2x+3y) d/dt log(t)=e^t δ/δx 2x+3y=2 δ/δy 2x+3y=3 合成関数の微分の公式を適用し、 fx(x,y)=e^(2x+3y)*2=2 e^(xy) fy(x,y)=e^(2x+3y)*3=3 e^(xy) fxx(x,y)=2 e^(2x+3y)*2=4 e^(xy) fxy(x,y)=2 e^(2x+3y)*3=6 e^(xy) fyx(x,y)=3 e^(2x+3y)*2=6 e^(xy) fyy(x,y)=3 e^(2x+3y)*3=9 e^(xy) (5) x^2+3xy+4y^2+1 fx(x,y)=2x+3y fy(x,y)=3x+8y fxx(x,y)=2 fxy(x,y)=3 fyx(x,y)=3 fyy(x,y)=8 (6) xy(x^2-y^2)/(x^2+y^2) ((x,y)≠(0,0)) { 0 ((x,y)=(0,0)) fx(0,0)={f(x,0)-f(0,0)}/x=0/x=0 同様に fy(0,0)={f(0,y)-f(0,0)}/y=0/y=0 (x,y)≠0のとき、商の微分の公式を適用して fx(x,y)=y(x^4+4x^2y^2-y^4)/(x^2+y^2)^2 fy(x,y)=x(x^4-4x^2y^2-y^4)/(x^2+y^2)^2 再度、商の微分の公式を適用して fxx(x,y)=-4xy^3(x^2-3y^2)/(x^2+y^2)^3 fxy(x,y)=(x^6+9x^4y^2-9x^2y^4-y^6)/(x^2+y^2)^3 fyx(x,y)=(x^6+9x^4y^2-9x^2y^4-y^6)/(x^2+y^2)^3 fyy(x,y)=-4xy(2x^4+x^2+y^4)/(x^2+y^2)^3 疑問点1 fxx(0,0),fxy(0,0),fyx(0,0),fyy(0,0)についても、 求めなくてもいいのでしょうか? 疑問点2 商の微分を2回行うことにより、計算結果を導いたのですが、 もっと簡単な手順で導く公式等はないのでしょうか? たびたびの質問で申し訳ありませんが、 ご指導のほどよろしくお願いします。

  • 2変数関数の極値の問題です。

    2変数関数の極値の問題です。 次の極値の問題について議論せよ。 f(x,y)=x^4-y^4 という問題で、fx=fy=0を満たす(a,b)でfxx=A,fxy=B,fyy=Cとおいて、極値判定法を考えましたが、この場合、(a,b)=(0,0)だけとなり、B^2-AC=0となって極値の判定ができませんでした。 この場合、どのような方法で示せばよいのでしょうか。 よろしくお願いします。

  • 問題が解けません誰か解法と答えを教えてください

    2変数関数f(x、y)=x^3-3x+3xy^2について (1)連立方程式fx(x、y)=fy(x、y)=0を解け (2)不等式fxx(x,y)fyy(x,y)-{fxy(x,y)}^2>0の表す領域を図示せよ (3)f(x,y)の極値を求めよ です、お願いします。

  • 数学

    わかりません解き方教えてください z=f(x,y)は2回偏微分可能でfxy,fyxは共に連続とする。 1. (3(∂/∂x+2(∂/∂y)^2 f(x,y) をfxx, fxy, fyyを用いて表せ。 2. f(x,y)=e^(xy)のとき, (3(∂/∂x+2(∂/∂y)^2 f(0,0)を求めよ。

  • 解き方がわかりません助けてください

    2変数関数f(x,y)=x^3-3x+3xy^2について。 (1)連立方程式fx(x,y)=fy(x,y)=0を解け。 (2)不等式fxx(x,y)fyy(x,y)-{fxy(x,y)}^2>0の表す領域を図示せよ。 (3)f(x,y)の極値を求めよ。 です。 まず(1)のfx(x,y)=fy(x,y)=0の段階からわかりませんfx(x,y)がどういう意味なのかが分かりません。 (2)は上と同じ要素でわからない&計算方法がわかりません。 (3)は(2)が解けないと解けないですよね?こちらも求め方を教えてください。 基本的に何をどうすれば解へとたどり着けるのかが分かっていないので、できれば詳しく解法を教えてください。