• ベストアンサー
  • すぐに回答を!

数学「軌跡」の問題が分りません。教えてください。

(1)点P(X、Y)が円x^2+y^2=9の円周上を動く。 (1)点A(6,6)と点Pとを結ぶ線分APの中点Qの座標を(x、y)とする。x、yをX、Yの式で表してください。(途中式もお願いします。) (2)点Qの軌跡を求めてください。(途中式もお願いします。) (2)mを定数とする。放物線y=x^2-(m+1)x+m^2-mの頂点の座標をmを用いて表してください。また、mがm≧0であるすべての実数値をとって変化するときの頂点の軌跡を求めてください。(途中式もお願いします。) ちなみに答えは、(1)(1)x=(X+6)/2、y=(Y+6)/2 (2)中心(3、3)、半径3/2の円 (2)((m+1)/2、3m^2/4-3m/2-1/4) 放物線y=3x^2-6x+2 (x≧1/2) です。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
noname#214474
noname#214474

問1(1)について 任意の線分の両端の座標を(a,b),(m,n) 、線分の中点を(x、y)とおくと x=(a+m)/2 y=(b+n)/2 このように表すことができます。 この問題では線分の両端が点P、Aですので、同様に考えることにより。 x=(X+6)/2 y=(Y+6)/2 と解くことができます。 (2)について (1)より、 X=2x-6 -(1) Y=2y-6 -(2) と変形ができます。 ここで、点Q(X、Y)上の点であるので円の方程式 x^2+y^2=9 に代入し X^2+Y^2=9 さらに(1)(2)を代入します。 後は変形していくことにより (x-3)^2+(y-3)^2=9/4 ここから答えが求まります。 軌跡を求める問題は、つまりは既にある条件から新たに図形の方程式を求めるということです。 わからなくなったら、「まだ利用していない条件はないか」と考えるようにしましょう。 問2 平方完成を行い、変形すると y={x-(m+1)/2}^2-(3m^2/4-3m/2-1/4) という式が求まります。 ここから頂点が求まります。 頂点の軌跡を求めるので、頂点の座標を(x、y)とおきます。 前の問題より x=(m+1)/2 y=3m^2/4-3m/2-1/4 -(3) m≧0なので x=(m+1)/2≧(0+1)/2 つまり ※x≧1/2 また x=(m+1)/2 より m=2x-1 これを(3)に代入して変形を行い y=3x^2-6x+2 これが求まります すいません。できるだけ簡潔にまとめようとしたのですが、長くなってしまいました。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

とても解りやすい解説で助かりました。 ありがとうございます。

関連するQ&A

  • 軌跡の問題について

    軌跡の問題で困っているものがあります。 放物線y=x^2/4上の点Q、Rは、それぞれその点におけるこの放物線の接線が直交するように動くものとする。 この2本の接線の交点をP、線分QRの中点をMとしたとき、次の問いに答えよ。 (1)点pの軌跡の方程式 (2)点Mの軌跡の方程式 点QとRをそれぞれ(a,a^2/4)と(b,b^2/4)として接線をだして求めて行くようですが、良く分かりません。 答えは(1)y=-1 (2)y=x^2/2+1です。 解法が分かる方、解説お願いします。

  • 関数・平行移動・軌跡 (高校数学1)

     こんにちは。高校数学1 関数に関する問題集中の問題の解答の解説に関連して質問します。 問題:  「放物線Y=X^2を点(1,2)を通るように並行移動した放物線全体を考える。  このような放物線の頂点Vの描く軌跡を求めよ。」 解答:    「放物線Y=X^2 …(1) を  X軸方向にp、Y軸方向にqだけ並行移動しものは、方程式    Y-q=(X-p)^2 …(2)  で表される。  放物線(2)が点(1,2)を通るための条件は    2-q=(1-p)^2  すなわち q=-(p-1)^2+2  が成り立つことである。  さて、放物線(2)の頂点Vの座標は    V(p、q)  であるから、p、qが条件(3)を満たして変化するときのV(p、q)の軌跡が求めるものである。  よって、Vの軌跡は    Y=-(X-1)^2+2 …(4)   で表される放物線である。」 質問→ (4)に関して、V(p、q)の軌跡     q=-(p-1)^2+2   をどういう理由で    Y=-(X-1)^2+2  に置き換えたのかがよく分かりません。分かる方がいらっしゃいましたら、もう少し詳しい解説をお願いします。

  • 軌跡の問題です

    放物線y=x^2と直線y=mx+m(m>0)の交点をP,Qとする。 mが変化するとき、線分PQの中点の軌跡を求めよ。 という問題です。 答えはy=2x^2+2x(x>0)とわかっているのですが 途中の計算がさっぱりです。 教えてください。お願いします。 ちなみにx^2とはxの二乗という意味です。 初めてだから書き方が違うかもしれませんが・・・

  • 軌跡

           放物線y=x2/4(四分のエックス二乗)上の点Q、Rは それぞれの点におけるこの放物線の接線が 直交するように動くものとする。 この二本の接線の交点をP、線分QRの中点をMとする時、 次の問いに答えよ。 1)点Pの軌跡を表す方程式を求めよ。 2)点Mの軌跡を表す方程式を求めよ。 誰か解き方教えてくださいm(-_-)m

  • 軌跡の求め方がいまいち分かりません。

    軌跡の求め方がいまいち分かりません。 残り僅かなのでまとめて質問させてもらいます。 (1)円x^2+y^2=9の上を点Pが動く時、Pと点A(7,0)を結ぶ線分APの中点Qの軌跡を求めよ (2)2点A(-4,1),B(2,3)に対して次の条件を満たす点の軌跡を求めよ (1)AP^2-BP^2=8   (2)AP^2+BP^2=28 (3)一つの頂点は原点Oであり、他の二つの頂点は放物線y^2=4px(p>0)上にある正三角形の1辺の長さと面積を求めよ 軌跡の求め方は 1.求める軌跡上の点を(x,y)とおく 2.与えられた条件を方程式で表す こうですよね? (1)の場合、点Pを(x,y)とおいて、PQ=QAから求めてみたのですが図示したものとはかけ離れたものが出てしまいました。(円になると思うんですが)

  • 数学の問題の解説お願いします。

    シニア数学演習 185 放物線y=x^2/4上の点Q,Rは、それぞれの点におけるこの放物線の 接線が直交するように動くものとする。 この2本の接線の交点をP、線分QRの中点をMとするとき、次の問いに答えよ。 (1)点Pの軌跡を表す方程式を求めよ。 (2)点Mの軌跡を表す方程式を求めよ。 解答 (1)y=-1 (2)y=x^2/2+1 解法を詳しく教えてください。 よろしくおねがいします。

  • 数学の問題です。

    数学です。 よろしくお願いします。 直線y=mxが放物線y=x^2+1と相異なる2点P,Qで交わるとする。 mがこの条件を満たしながら変化するとき、mのとりうる値の範囲を求めよ。 また、このとき 、線分PQの中点Mの軌跡を求めよ。

  • 軌跡と方程式

    『放物線y=x~2と直線y=m(x-1)は異なるP,Qと交わっている。このときの定数mの値の範囲を求め、mの値が変化するときの線分PQの中点Mの軌跡も求めなさい。』 という問題なのですが、放物線y=x~2と直線y=m(x-1)の交点Qを(u,v)、交点Pを(x,y)とし、交点Q(u,v)を放物線y=x~2と直線y=m(x-1)に代入した結果を交点P(x,y)代入してみたのですが、どうも違うようです。 解答によると定数mの値の範囲はm<0,4<mで線分PQの中点Mの軌跡はy=2x~2-2xのx<0,2<xの部分であるようですがここまでのプロセスを教えてください。

  • 軌跡の問題です

    2000年津田塾大学の過去問です。 放物線y=x2(xの2乗)上の2点P(a,a2)、Q(b,b2)がb=a+2を満たしながら動くとする。このとき、線分PQの中点の軌跡の方程式を求め、そのグラフをかけ。 線分PQの中点をR(x,y)とおくと考えて x=a+b/2 y=a2+b2/2 と考え、b=a+2を上の式に代入して考えてみたのですが、その後がよく分からなくなってしまいました。 その後の回答の仕方を教えてください。 ちなみに中点の軌跡だからy=x2のグラフと同じ形と考え、最小値を求めてそれを式に表すという方法ではだめでしょうか?

  • 軌跡の問題が分かりません

    問題:点A(6,0)と円x~2+y~2=16上の点Qを結ぶ線分AQの中点をPとする。Qがこの円上を動くとき、点Pの軌跡を求めよ。 解:点P,Qの座標を、それぞれ(x,y),(s,t)とする。 Qは円x~2+y~2=16上にあるから s~2+y~2=16・・・(1) Pは線分AQの中点であるから x=6+s/2 y=t/2 ゆえにs=2x-6 t=2y これを(1)に代入すると (2x-6)~2+(2y)~2=16 すなわち(x-3)~2+y~2=4・・・(2) 逆に、円(2)上の任意の点は、条件を満たす。  よって、求める軌跡は、中心が(3,0)半径が2の円である。 <~2は2乗の意> 疑問:(1)にx=6+s/2 y=t/2を代入すると、なぜ点Pの軌跡が出てくるのでしょうか。よく分かりません。 よろしくお願いします。