- ベストアンサー
- すぐに回答を!
軌跡の求め方がいまいち分かりません。
軌跡の求め方がいまいち分かりません。 残り僅かなのでまとめて質問させてもらいます。 (1)円x^2+y^2=9の上を点Pが動く時、Pと点A(7,0)を結ぶ線分APの中点Qの軌跡を求めよ (2)2点A(-4,1),B(2,3)に対して次の条件を満たす点の軌跡を求めよ (1)AP^2-BP^2=8 (2)AP^2+BP^2=28 (3)一つの頂点は原点Oであり、他の二つの頂点は放物線y^2=4px(p>0)上にある正三角形の1辺の長さと面積を求めよ 軌跡の求め方は 1.求める軌跡上の点を(x,y)とおく 2.与えられた条件を方程式で表す こうですよね? (1)の場合、点Pを(x,y)とおいて、PQ=QAから求めてみたのですが図示したものとはかけ離れたものが出てしまいました。(円になると思うんですが)
- gentian00
- お礼率23% (25/105)
- 数学・算数
- 回答数1
- ありがとう数1
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- aquatarku5
- ベストアンサー率74% (143/193)
(1) 円Pの座標を(s,t)、求める点Qの座標を(x,y) とおく。 s^2+t^2=9 x=(s+7)/2、y=(t+0)/2 即ち、s=2x-7、t=2y ∴(2x-7)^2+(2y)^2=9 ∴(x-7/2)^2+y^2=(3/2)^2 (2) 求める点の座標を(x,y)とおく (2-1) (x+4)^2+(y-1)^2-(x-2)^2-(y-3)^2=8 ∴12x+4y+4=8 即ち3x+y-1=0 (2-2) (x+4)^2+(y-1)^2+(x-2)^2+(y-3)^2=28 ∴2x^2+2y^2+4x-8y+30=28 ∴(x+1)^2+(y-2)^2=2^2 (3) 正三角形の3点をA,B及びOとする。 A(s^2/4p,s) とおくと、 AO=BO、A≠Bより、 B(s^2/4p,-s) となる。 このとき、AB=2|s|=AO ∴2|s|=√(s^2+s^4/(4p)^2) ∴s=±4p√3 (p>0) したがって、1辺の長さ=8p√3、面積=48p^2√3
関連するQ&A
- 数学IIの円の直線と軌跡の方程式でわからないところがあります
9 円x^2+y^2=13の接線のうち、直線2x-3y-1=0に 平行なものの方程式を求めよ。 3 次の条件を満たすてんPの軌跡を求めよ。 (3) 2点A(4、-2)、B(-1,8)にたいして AP:BP=2:3 4 次の点Aと円について、点Pが円周上を動くとき、点Aと点Pを結 ぶ線分APの中点Qの軌跡を求めよ。 2A(6、-2)、x^2+y^2=8
- 締切済み
- 数学・算数
- 数学「軌跡」の問題が分りません。教えてください。
(1)点P(X、Y)が円x^2+y^2=9の円周上を動く。 (1)点A(6,6)と点Pとを結ぶ線分APの中点Qの座標を(x、y)とする。x、yをX、Yの式で表してください。(途中式もお願いします。) (2)点Qの軌跡を求めてください。(途中式もお願いします。) (2)mを定数とする。放物線y=x^2-(m+1)x+m^2-mの頂点の座標をmを用いて表してください。また、mがm≧0であるすべての実数値をとって変化するときの頂点の軌跡を求めてください。(途中式もお願いします。) ちなみに答えは、(1)(1)x=(X+6)/2、y=(Y+6)/2 (2)中心(3、3)、半径3/2の円 (2)((m+1)/2、3m^2/4-3m/2-1/4) 放物線y=3x^2-6x+2 (x≧1/2) です。
- ベストアンサー
- 数学・算数
- 数学の軌跡の問題
大学入試問題集の数学の軌跡の問題について質問です。 問題・・・ 座標平面上に2点O(0,0),A(2,4)と円;x^2+y^2=64がある、また、Pをこの円周上の点とし、2点P,Aを通る弦をPQとする。 点Pが円周上を動くとき、弦PQの中点をMとして、動点Mの軌跡の方程式を求めよ。 答え・・・弦PQは点A(2,4)を通るから、 a(x-2)+b(y-4)=0とおけ、 (1) PQの中点Mを通る直線OMは、bx-ay=0 (2)とおける。 (1)、(2)をみたす実数a.b(a^2+b^2≠0)が存在するためのx,yの条件を求める という流れなのですが、(a^2+b^2≠0)というのがどこからでたのかがわかりません。 あと、(1)と(2)の式は、中点Mをa,bとおくと、OMはbx-ay=0 ・・・(2) 中天MはOから直線PQにおろした垂線の足であるので、PQの傾きは-a/b. PQは点A(2,4)をとおるのでy=-a/b.(X-2)+4なのでa(x-2)+b(y-4)=0・・・(1) とおける。というやり方で導いたのですが、違いますでしょうか?
- ベストアンサー
- 数学・算数
- 軌跡と領域の問題教えてください。
軌跡と領域に関する数2の問題です。教えてください。 (1)2つの不等式 x^2+y^2≦4、x+√3y-2≧0を同時に満足する領域の面積を求めよ。 (2)平面上の2点A(2,1)、B(-4,-2)に対してAP:BP=1:2を満 たす点Pの軌跡を求めよ。 (3)2次関数y=x^2+(2k-10)x-4k+16(k≧0)のグラフについて次の問に答えよ。 1.頂点の座標をkを用いて表せ。 2.kが変化するとき、頂点の軌跡を求めよ。 問題集に解説がついていないので、解くために使った知識などもよければ詳しく教えてください…。お願いします。
- 締切済み
- 数学・算数
- 数学の軌跡と領域に関する問題です。教えてください。
数学の軌跡と領域に関する問題です。教えてください。 xy平面上の放物線 A:y=x^2、B:y=-(x-a)^2+bは異なる2点P(x1,y1)、Q(x2,y2) (x1>x2)で交わるとする。 x1-x2=2を満たしながら、a,bが変化するとき、直線PQの通過する領域を求め図示せよ。 という問題なのですがどう解けばいいのかまったくわかりません。どなたか教えてください!
- ベストアンサー
- 数学・算数
- 軌跡と方程式
『放物線y=x~2と直線y=m(x-1)は異なるP,Qと交わっている。このときの定数mの値の範囲を求め、mの値が変化するときの線分PQの中点Mの軌跡も求めなさい。』 という問題なのですが、放物線y=x~2と直線y=m(x-1)の交点Qを(u,v)、交点Pを(x,y)とし、交点Q(u,v)を放物線y=x~2と直線y=m(x-1)に代入した結果を交点P(x,y)代入してみたのですが、どうも違うようです。 解答によると定数mの値の範囲はm<0,4<mで線分PQの中点Mの軌跡はy=2x~2-2xのx<0,2<xの部分であるようですがここまでのプロセスを教えてください。
- 締切済み
- 数学・算数
- 軌跡の問題が分かりません
問題:点A(6,0)と円x~2+y~2=16上の点Qを結ぶ線分AQの中点をPとする。Qがこの円上を動くとき、点Pの軌跡を求めよ。 解:点P,Qの座標を、それぞれ(x,y),(s,t)とする。 Qは円x~2+y~2=16上にあるから s~2+y~2=16・・・(1) Pは線分AQの中点であるから x=6+s/2 y=t/2 ゆえにs=2x-6 t=2y これを(1)に代入すると (2x-6)~2+(2y)~2=16 すなわち(x-3)~2+y~2=4・・・(2) 逆に、円(2)上の任意の点は、条件を満たす。 よって、求める軌跡は、中心が(3,0)半径が2の円である。 <~2は2乗の意> 疑問:(1)にx=6+s/2 y=t/2を代入すると、なぜ点Pの軌跡が出てくるのでしょうか。よく分かりません。 よろしくお願いします。
- 締切済み
- 数学・算数
- 軌跡の説明お願いします。
軌跡で、 「平面上に長さ3aの線分ABがある。2点A,Bからの距離の比が2:1 となる点Pの軌跡を求めよ。ただしa>0とする。」という問題(Pの座標は(X,Y)としてます。)の途中で、 「AP²=4BP² (X+2a)²+Y²=4{(X-a)²+Y²} X²-4aX+Y²=0」 と変形する部分があると思うんですけどどうしてもそこが理解できません。 わかる方、教えて下さい。お願いします。
- 締切済み
- 数学・算数
質問者からのお礼
ありがとうございました!!