• 締切済み

Noetherチャージと生成子

場の理論でNoetherの定理から出てくる保存電荷Qが場の微小変換の生成子になっているというのがどういうことなのか分かりません。 φ(x)→φ(x)+εG(φ)(ε<<1) において古典論、量子論において [φ,Q]=G(ポアソン括弧) [iQ,φ]=G(交換子) がそれぞれ成り立つことがQが生成子になっているということらしいのですが、ここでの生成子の意味と、なぜQが生成子であることと上の関係式が成り立つことが同じ事なのか教えてください。

みんなの回答

  • eatern27
  • ベストアンサー率55% (635/1135)
回答No.2

http://members3.jcom.home.ne.jp/nososnd/field/gene.pdf この辺りの話ですか?ちゃんと読んでないですけど。

  • eatern27
  • ベストアンサー率55% (635/1135)
回答No.1

まぁ、生成子ってのはここでは、「微小変換による場の変化量(G)を生成するもの」という感じの意味ですね。 場との交換子(ポアソン括弧)をとる事で、Gになるから生成子と呼ぶのです。

sa10no
質問者

補足

回答有り難うございます。 ということは群論で出てくる生成子やルジャンドル変換の生成母関数などとは定量的に対応するわけではないんですか? また、これを生成子と呼ぶのは一般的なことですか?

関連するQ&A

  • 量子電気力学の非ネーター保存則

    保存則はネーターの定理から導かれるものだけではありません。量子電気力学の場合、ネーター保存料は電荷、エネルギー、運動量などです。 Hojman,Lutzkyの非ネーター保存量は量子電気力学の場合、どの様なものになるのでしょうか

  • 正準変換とユニタリ変換

    またまた質問させていただきます。  Heisenberg描像の量子論(質点の量子力学、および場の量子論)は古典論と対応するように作られているとされていると思います。そして古典論の正準変換に対応するものは量子論のユニタリ変換とされていると思います。しかし私は正準変換とユニタリ変換が対応するかは怪しい!!と思っています。  ユニタリ変換は行列で変換するのですから線形の変換にしかなりません。しかし正準変換はポアソン括弧を変えさえしなければ良いので線形である必要はありません。ハミルトニアンがH(p,q)で与えられる系があったとして、これに線形変換でないような正準変換をしてH(P,Q)が得られたとします。P,Qは正準変数ですからこれに正準交換関係を仮定して量子化していけない理由は見当たりません。これはH(p,q)とユニタリ変換で結ばれないので量子論としては全く別のものになってしまうのでしょうか。スペクトルは異なるのでしょうか。  これだけを見ると、正準変換の方がユニタリ変換より広いようですが、ユニタリ変換の中に正準変換に含まれないものがあるかもしれません。ある場の量子論の本を見ていると系の時間発展を無限小の時間並進のユニタリ変換として記述していたのでびっくりしました。異なる時刻の変数を結び付ける正準変換はあるのでしょうか(確かにポアソン括弧は変わりませんが…)

  • 場の理論におけるNoetherの定理

    Noetherの定理について質問です。 手元の教科書ではNoetherの定理が次のように説明されていました。 場Φ(x)の微小変化 Φ(x)→Φ(x)+εG(Φ,∂Φ)------(1) においてラグランジアン密度が δL=ε∂_μ(J^μ(Φ,∂Φ))------(2) のように、変化が場やその微分の関数のxについての全微分の形にかけるとき作用が不変になり、保存量が存在する。なぜなら(1)をラグランジアン密度に代入してEuler-Lagrange方程式を使うと δL=∂_μ[(∂L/∂(∂_μΦ(x)))G]------(3) となるから(2)と(3)から ∂_μ[(∂L/∂(∂_μΦ(x)))G-J^μ]=0 より[ ]内が保存する。 質問は2つあります。 1. 作用が不変なのは全微分を表面項として落とせるからですか? 2. そもそもEuler-Lagrange方程式を使って一般的に(3)のようにδLが全微分の形にかけるのでJ^μという量を導入する意味がないような気がします。つまり(3)の[ ]内が無限遠で0になるということを要請すればいいようなきがするのですが、そうなると一般の変化に対して保存量が必ず存在することになってしまします。私のミスリードだと思うのですがどこが間違ってるのでしょうか?

  • Haagの定理

    Haagの定理によれば、場の量子論は自由場の理論以外は無意味になってしまう様に思えますが、これを回避する方法はあるのでしょうか。

  • ネーターの定理ってなんですか2

    ネーターの定理ってなんですか? http://oshiete1.goo.ne.jp/kotaeru.php3?q=304503 で、siegmund さんはじめ、皆さんが書いた解答が とても勉強になったのですが、 ちょっと根本的に分からないことがあります。 例えば、siegmund さんの図の例だと エネルギー E=1/2 m v[t]^2 + m g (- x[t]) は 保存されますよね。 ここで、 ラグランジアン L=1/2 m v[t]^2 - m g (-x[t]) だと思うのですが、 oshiete_goo さんの | 時間方向の並進運動に関する時空の不変性(時間方向の並進対称性) | <--> エネルギー保存則 siegmund さんの | 不変かどうかを調べるべき量は, | oshiete_goo さんも書かれているとおりラグランジアンなのですが, から考えたのですが、 時刻が t から t' に変化すると、 L は不変ではないように見えます。 私は何を勘違いしているのでしょうか・・・? すみませんがよろしくおねがいします。

  • 保存則について

    ネーターの定理から保存則を導くのは完全なものではないと言うことは普通の教科書に書いてあるよりもっと強調すべきではないかと思っています。例えば場の理論でネーターの定理から導かれる正準エネルギー運動量テンソルは対称ではないし、ゲージ不変でもないしトレースレスでもありません。そこで質問させて頂きたいのですが、 (1)エネルギー運動量テンソルはトレースレスということはどこからでてくるのでしょうか。 (2)Hojman,Lutzkyの非ネーター保存則は作用原理の立場からはどの様に理解されるのでしょうか。 (3)古典電磁気学でPoyntingベクトルがエネルギー流になることは散乱問題では実験事実があると思いますが、静電磁場でもPoyntingベクトルがエネルギー流を与えると言う実験はあるのでしょうか。

  • 量子論から古典論への移行

    保江邦夫氏によれば量子論でプランク定数を0にした極限が古典論になると考えるのは誤りで、量子数のゆらぎが平均の量子数に比べて非常に小さいときに古典論になると考える必要があるそうです(保江邦夫「量子脳場理論入門」(サイエンス社))。しかしファインマン経路積分をWBK展開すると、プランク定数が0の極限で古典的軌道が主要な寄与をすることが示せます。このことは量子数のゆらぎが小さいときに古典論になるとする立場からはどのように説明したらよいのでしょうか。

  • くりこみ可能なラグランジアン密度について質問です。

    電荷q_Φとq_ψを持つ複素スカラー場Φと、ディラック場ψとの電磁相互作用を考える。 このとき相対論的不変性とゲージ不変性から、くりこみ可能なラグランジアン密度は L(A_μ, Φ, ψ)=(-1/4)F_{μν}F^{μν}+(D_μΦ)*D^μΦ-m_Φ^2Φ*Φ-(λ/4)(Φ*Φ)^2 +ψ^†γ^0(iγ^μD_μ-m_Φ)ψ で与えられることを示せ。ここで、Φおよびψに対する共変微分は D_μΦ≡(∂_μ+iq_ΦA_μ)Φ, D_μψ≡(∂_μ+iq_ψA_μ)ψ で定義される。 この問題の解答は坂本眞人著「場の量子論 不変性と自由場を中心として」のcheck9.12に書かれているのですが、私には理解できないのです。

  • ハミルトン力学、ラグランジュ力学の使い方に関して

    量子力学では、ハミルトニアンが出てくるから分かる通り、 ハミルトン力学が主要になります。 そして場の量子論では、ラグランジアン密度がよく出てくることから分かる通り ラグランジュ力学が主要になります。 しかしながら、高校の物理で習うような古典力学では、ハミルトン力学を使うか、ラグランジュ力学を使うか、古典力学を使うかは、決まりがないように思います。 では、未知の問題が与えられたときに、ハミルトン力学を使うか、ラグランジュ力学を使うか、古典力学を使うかはどうやって選べば良いのでしょうか?計算のしやすさで選べば良いとは思うのですが、どうやればそれが分かるのでしょうか? それと、量子力学では、ハミルトン力学、場の量子論では、ラグランジュ力学が重要になるのはなぜなのでしょうか? 量子力学でラグランジュ力学、場の量子論でハミルトン力学があまり使われないのはどういう理由によるものなのでしょうか?

  • 質問場の量子論,相対論を勉強するための前提知識

    場の量子論とか一般相対論を学ぶための前提知識としてあった方がいいのは何でしょうか? 場の量子論というのは量子力学より一歩進んだ理論なのですか,それとも全く別物でしょうか? 物理の各分野間の関連(これを勉強した後はあれを勉強するといいとか)も簡単に教えていただけるとありがたいです.