sa10noのプロフィール

@sa10no sa10no
ありがとう数147
質問数58
回答数45
ベストアンサー数
15
ベストアンサー率
68%
お礼率
22%

  • 登録日2010/01/23
  • 結晶中の電子密度に何故、逆格子が現れるのですか?

    結晶は周期的に原子が並びどの原子も性質は同じで、電子密度も周期的に変化するから、電子密度は平面波(三角関数)で表されるのですよね?周期関数はフーリエ級数展開できるのは分かるのですが、そこでどうして平面波の式に逆格子ベクトルが出てくるのかが分からないです。 電子密度(電荷密度)は単位体積当たりに何クーロンの電荷があるかなので単位は[C/m^3]だと思うのですが、第(1)、(2)、(3)式とどこにも電子の量を表す物が無いような気がします。どうして電子の数の情報が無いのにその結晶中の電子の密度nが求まるのか、さらにはどうして逆格子ベクトルが出てくるのかがずっと理解できないままです。第(3)式の1/Vは体積で割っているのは分かりますが、なぜ積分の中身が電荷量に相当するのですか?そもそもn_Gとはどういう物理量なんでしょうか。 イメージでも良いので物理学的に教えてもらえないでしょうか。

  • 結晶中の電子密度に何故、逆格子が現れるのですか?

    結晶は周期的に原子が並びどの原子も性質は同じで、電子密度も周期的に変化するから、電子密度は平面波(三角関数)で表されるのですよね?周期関数はフーリエ級数展開できるのは分かるのですが、そこでどうして平面波の式に逆格子ベクトルが出てくるのかが分からないです。 電子密度(電荷密度)は単位体積当たりに何クーロンの電荷があるかなので単位は[C/m^3]だと思うのですが、第(1)、(2)、(3)式とどこにも電子の量を表す物が無いような気がします。どうして電子の数の情報が無いのにその結晶中の電子の密度nが求まるのか、さらにはどうして逆格子ベクトルが出てくるのかがずっと理解できないままです。第(3)式の1/Vは体積で割っているのは分かりますが、なぜ積分の中身が電荷量に相当するのですか?そもそもn_Gとはどういう物理量なんでしょうか。 イメージでも良いので物理学的に教えてもらえないでしょうか。

  • 物理II:気体の問題について

    こちら(↓)の画像を見ながら答えて頂けたらと思います。 [参考URL] http://p.tl/QOnd 図のように、滑らかに動くピストンを備えた容器が水平面上にあり、2つの室には理想気体(等量)が入っており、特に左側の室にはばねが自然長で入っているものとします。また、ピストンと容器は断熱材で出来ており、設置されているヒーターの体積は無視できるものとします。はじめ、2室の気体の圧力、温度、体積は等しく、特に体積は V でした。 この後ヒーターにより気体を加熱して室Aの体積を3V/2とした後ヒーターのスイッチを切り、ピストンに小さな穴をあけました。 今回質問したいのは、この後気体がどうなるかということです。 具体的には、この後2室の気体の圧力が等しくなるため、ばねの伸びは0となり、体積はVに戻るというのですが、そうすると、この時の気体の圧力を P , 左室の気体の物質量と温度をそれぞれ n , t , 右室の気体の物質量と温度をそれぞれ N , T , 気体定数を R としますと、状態方程式より、  PV = nRt かつ PV = NRT よって nRt = NRT 整理して nt = NT ここで、最初どちらの室にも等量の気体が入っており、かつ、ピストンに穴をあけたことによって、左室の気体が右室に流れ込んだと考えられますから、  n ≠ N  ∴ t ≠ T つまり、左室と右室で温度が違うということになります。これが不思議なのです。 そもそも私は、2室の圧力が等しくなったのは、ピストンに穴をあけたことにより気体が単一のものとなった(単一気体の圧力が部分的に高いとか低いとかいったことは考えられず、気体のどの部分をとっても圧力が等しくなった)からと考えていたのですが、そうすると、温度も2室で等しくなければならないと思うのです(温度も同様に、単一気体で部分的に高いとか低いとかいったことが考えられない。ピストンに穴があいている以上、2室で熱が伝播し最終的に等しくなるのでは)。 以上、私の質問を纏めますと、  1.何故2室の温度が異なるのか  2.何故2室の圧力が等しくなるのか(私の解釈は合っているか) この2点です。宜しくお願い致します。

  • 誘導起電力

    大学受験生です。 正方形の導体棒(左上から頂点をABCDとする、一辺あたり抵抗r)があり、頂点ABに抵抗のない導線を接続しそこに抵抗Rをつける。そして正方形の中の磁束密度を変化させていき、長方形ABCDに誘導起電力VがA→B→C→Dと発生するとする。 とあり、この回路に流れる電流を求めるのですが、キルヒホッフの法則をA→B→抵抗に適応するとき、抵抗Rに流B→Aと流れる電流をI、AB(抵抗r)にA→Bと流れる電流をiとするとRI+ri=0となっていました。 恐らく解答は正しいのでしょうが、僕がわからないのは、RI+ri=0のところになぜ誘導起電力が関わってこないのかということです。正方形ABCDにVかかっているなら一辺あたりV/4かかっているみたいに正方形ABCDに均一にかかってないのです。つまりRI+ri=V/4にどうしてならないかということです。

  • 誘導起電力

    大学受験生です。 正方形の導体棒(左上から頂点をABCDとする、一辺あたり抵抗r)があり、頂点ABに抵抗のない導線を接続しそこに抵抗Rをつける。そして正方形の中の磁束密度を変化させていき、長方形ABCDに誘導起電力VがA→B→C→Dと発生するとする。 とあり、この回路に流れる電流を求めるのですが、キルヒホッフの法則をA→B→抵抗に適応するとき、抵抗Rに流B→Aと流れる電流をI、AB(抵抗r)にA→Bと流れる電流をiとするとRI+ri=0となっていました。 恐らく解答は正しいのでしょうが、僕がわからないのは、RI+ri=0のところになぜ誘導起電力が関わってこないのかということです。正方形ABCDにVかかっているなら一辺あたりV/4かかっているみたいに正方形ABCDに均一にかかってないのです。つまりRI+ri=V/4にどうしてならないかということです。