• 締切済み

証明の解説

Tacosanの回答

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

え~と, どこがわからないんでしょうか? 前半 a ≡ 0 のとき? それともそうでないとき? 「そうでないとき」だとしたら, 「フェルマーの定理」とやらが何を主張しているのかわかりますか? それもわかるんだとしたら, 一体全体どこがわからない?

susuken23
質問者

補足

もしa ≡ 0 (mod p)ならg(f(a))≡0 (mod p) そうでなければ、フェルマーの定理でa^(p-1)k(q-1) ≡1( mod p)が結論づけれるって訳したんですが、 まず、もしa ≡ 0 (mod p)ならg(f(a))≡0 (mod p) となるのがわかんないです。 その次にフェルマーの定理で結論づけられるって所。 最後の g(f(a))≡aっていうのがどこから来たのか。 わかりにくい質問ですがぜひお願いします(>_<)

関連するQ&A

  • フェルマの小定理の証明方法について

    フェルマの小定理の証明は、ふつうは、二項定理と数学的帰納法、または、オイラーの定理を使うようです。以下の証明で、(式a)から(式b)に移るのは妥当なのか、よくわかりません。 [蛇足] フェルマの小定理より、オイラーの定理の証明のほうが簡単なのは違和感を感じるのですが・・・。フェルマの小定理の簡明な証明方法があったら、それも教えてほしいです。 ●オイラーの定理 (a,m)=1のとき    a^(φ(m))≡1 (mod m) 【フェルマの小定理】 a^(p-1)≡1 (mod p)  ただし、aは正の整数(←条件を、少し制約しました。)、pは素数、aとpは互いに素((a,p)=1) とする。 ■証明 数学的帰納法を用いる。 (1)a=1 のときは明らか。 (2)a=k のとき成り立つと仮定して、a=k+1のとき成り立つことを証明する。 言い換えると、mod p において、 k^p≡k ⇒ (k+1)^p≡k+1 を証明すればよい。 以下、合同式は mod p の場合のことを指す。 仮定より、 (k)^p≡k (k)^p-1≡k-1 F(k)=k^(p-1)+k^(p-1)…+1 とおくと、 (k-1)・F(k)≡k-1 よって、 F(k)≡1 ところで、F(k)はp個の元から構成されており、 p-1 Σ(k^m)≡1          (式a) m=0 と書き直せる。ここで、kをk+1に置き換えるが、加法+と乗法・を交換則、結合則、分配則をみたす演算子*とすると、 p-1 Σ((k)^m*(1)^m)≡1     (式b) m=0 と書ける。これより、  p-1 k・Σ((k)^m*(1)^m)≡k  m=0      p-1 (k*1-1)・Σ((k)^m*(1)^m)≡k      m=0 よって、 (k*1)^p-1≡k 書き直して、 (k+1)^p≡k+1     <証明終>

  • 行列の写像のwell-definedの証明ができま

    宜しくお願い致します。 N_n:={X;Xはn×n正規行列}とし,2つの写像f:R→R,F:N_n→R^{n×n}を f(x):=Σ_{k=0}^∞a_kx^kとし,Fは X=P^t diag(λ_1,λ_2,…,λ_n)P (但し,Pは直交行列,diag(λ_1,λ_2,…,λ_n)は対角行列)と書けるので, F(X):=P^t diag(f(λ_1),f(λ_2),…,f(λ_n))Pと定義するとFはwell-definedである事を示す問題です。 [証] 背理法を使って証明する。 X:=P^t diag(λ_1,λ_2,…,λ_n)P=Q^t diag(μ_1,μ_2,…,μ_n)Q…(*)の時 (ここで,λ_1,λ_2,…,λ_n,μ_1,μ_2,…,μ_nはXの固有値となりますね), P^t diag(f(λ_1),f(λ_2),…,f(λ_n))P≠Q^t diag(f(μ_1),f(μ_2),…,f(μ_n))Qとなったと仮定すると, 左辺=(Σ_{k=1}^n p_{ki} f(λ_k) p_{jk}), 右辺=(Σ_{k=1}^n q_{ki} f(μ_k) q_{jk}), なので ∃l,m∈{1,2,…,n}; Σ_{k=1}^n p_{kl} f(λ_k) p_{mk}≠Σ_{k=1}^n q_{kl} f(μ_k) q_{mk}で, (*)より, ∃r,s∈{1,2,…,n}; λ_r≠f(λ_r)または,μ_s≠f(μ_s)が言える。 従って, λ_r≠Σ_{k=0}^∞a_kλ_r^kまたは,μ_s≠Σ_{k=0}^∞a_kμ_s^k まで言えたのですが,ここからどうやって矛盾が引き出せますでしょうか?

  • p,qが素数のときn^{(p-1)(q-1)+1}≡n (mod pq

    p,qが素数のときn^{(p-1)(q-1)+1}≡n (mod pq)になりますか? nがpともqとも互いに素であるときは、 Fermatの小定理を使えばn^{(p-1)(q-1)}≡1 (mod pq) が言えるので、標記の命題は言えると思うのですが pまたはqのいずれか一方がnと互いに素でないとき n^{(p-1)(q-1)}≡1 (mod pq)は言えないものの n^{(p-1)(q-1)+1}≡n (mod pq)は言えてしまっているように思えます (私がやったケースはp=3,q=11の場合です)。 これは正しいのでしょうか? 正しいとしたら何故ですか?

  • 離散数学の証明問題

    離散数学の証明問題 合同でないことを≡×と表します。 Pを素数とし、a≡×0(mod p)とする。また、aの位数をdとする。 このとき、次のことを示せ。 (1)整数nに対して、a^n≡1(mod p)であるならば、かつそのときに限り、d|n (2)dはp-1の約数である。 (3)整数i,jに対してa^i≡a^j (mod p)であるならば、かつそのときに限り、i≡j(mod p) (1)はFermatの小定理を使うと思うのですが、いまいち解法が浮かびません。 (2)はFermatの小定理から自明に思えますが、厳密に証明しないといけないみたいです。 (3)は証明方法がまったく分かりません。 分かる方、証明お願いします。

  • 写像の証明問題を教科書の定理、定義を組み合わせながらやっていたのですが

    写像の証明問題を教科書の定理、定義を組み合わせながらやっていたのですがうまく出来ません。 どなたか次の問題の証明過程を教えてください。 f:A→B, g:B→Aをともに全単射とすれば、g。f (gとfの合成写像): A→Cも全単射である。 このとき、(g。f)^-1 (gとfの合成写像のインバース)=f^-1。g^1(fのインバースとgのインバースの合成写像)であることを示せです。 お願いします。

  • 写像の単射全射のところの関係式に関する証明について

    写像の単射全射のところの証明がわからないので、ご教授ください。 集合AからBへの写像をfとし、a∈A,P⊂A,b∈B,Q⊂Bとする。 1.fが単射のとき、a∈P ⇒ f(a)∈f(P)の逆が成り立つことの証明 2.fが単射のとき、P1⊂P2 ⇒ f(P1)⊂f(P2)の逆が成り立つことの証明 3.fが単射のとき、f(A-P) ⊃ f(A) - f(P) の逆が成り立つことの証明 4.fが単射のとき、f^(-1)(f(P)) = Pの証明 5.fが全射のとき、∃a'∈f^(-1)(Q), b=f(a') ⇒ b∈Qの逆が成り立つことの証明 6.fが全射のとき、Q1⊂Q2 ⇒ f^(-1)(Q1)⊂f^(-1)(Q2)の逆が成り立つことの証明 7.fが全射のとき、f(f^(-1)(Q)) = Qの証明 以上の7問です。 何個かだけでも構いませんので、回答して頂ければ嬉しいです。 また、はじめての質問ですので、ご迷惑をおかけするかもしれませんが、よろしくお願いいたします。

  • 同型写像の証明問題

    問題)f:R^n→R^nを同型写像とする。このとき、fの逆写像も同型写像となることを証明せよ。 以上の問題の方針として、Vを集合とした時に写像f:V→V、g:V→Vにおいてf◦g=idv、g◦f=idvならば、f、gは全単射であることを用いるのではないかと思ったのですが、これで正しいでしょうか。間違っていれば正しい方針を教えていただけないでしょうか。

  • 中国剰余定理 3数

    余りが条件式を満たすがわからないので質問します。 p,q,rどの2つをとっても、互いに素な自然数とする。a,b,cを任意の整数とする。このとき、 x≡a mod(p),x≡b mod(q),x≡c mod(r) を満たす整数xが、0からpqr-1までの間に1つ存在する。この定理の証明は、 (qr)s≡1 mod(p),(rp)t≡1 mod(q),(pq)u≡1 mod(r),を満たすs,t,uを求めることから始まります。sであれば、(qr)s+py=1・・・(1)という1次不定方程式を解くことで、得られます。q,rがpと互いに素であるから、qr,pが互いに素なので(1)を満たすs,yは存在します。同様にt,uが得られます。x=a(qr)s+b(rp)t+c(pq)u・・・(2)とおけば、xは条件式を満たします。(2)をpで割った余りは、a*1+0+0=aとなります。qで割れば余りb,rで割れば余りc,となります。ここからがわからない箇所です。このxをpqrで割った余りも条件式をみたします。 まず、自分の計算では、x=a(qr)s+b(rp)t+c(pq)u=pqr{as(1/p)+bt(1/q)+cu(1/r)}となり余りが出ません。そして条件式x≡a mod(p),x≡b mod(q),x≡c mod(r) を満たしているとも思えません。どなたか自分の考えの間違いを教えてください。お願いします。

  • 微積 証明

    R→実数、Q→有理数です。 連続関数f:R→R,g:R→Rが、任意のp∈Qに対してf(p)=g(p)をみたすならば、f=gであることを証明せよ。 まず「f:R→R」という表記の意味が分かりません。 証明する命題が正しいことは感覚的にはなんとなくわかる気がするんですが、それを文章で表せといわれるとできません。 どなたか解答と解説のほうお願いできませんか??

  • K上のテンソル積P_2(×)RとP'_2:={a_0+a_1x+a_2x^2;a_i∈R}とは同型である事を示せ

    K:={a+b√5;a,b∈Q},P_n:={Σ[i=0..n]a_ix^i;a_i∈K}とする。 K上のテンソル積P_2(×)RとP'_2:={a_0+a_1x+a_2x^2;a_i∈R}とは同型である事を示せと言う問題です。 P_2(×)RからP'_2への全単射な同型写像fとしてどのようなものが取れますでしょうか? P_2(×)R∋∀p(×)r→f(p(×)r):=????