• ベストアンサー

不等式について問題

a、b、cを正の数とするとき次の不等式が成り立つことを示せ (1)a+(1/a)≧2 (2){a+(1/b)}{b+(4/a)}≧9 (1)は両辺にaをかけてa^2-2a+1≧0にして証明しましたが(2)が分かりません 教えてください

noname#155402
noname#155402

質問者が選んだベストアンサー

  • ベストアンサー
  • f272
  • ベストアンサー率46% (8009/17115)
回答No.1

(1)で両辺にaをかけたように (2)では両辺にabをかけたらどうなる?

noname#155402
質問者

お礼

(ab-2)^2≧0で証明されました ありがとうございました

関連するQ&A

  • 不等式の問題なのですが

    a、b、cを正の数とするとき次の不等式が成り立つことを示せ (1)a+(1/a)≧2 (2){a+(1/b)}{b+(4/a)}≧9 (3){a+(1/b)}{b+(4/c)}{c+(9/a)}≧48 (1)と(2)は展開してから左辺≧0の形にしたあとaやabをかけて二乗の形にして証明したのですが(3)が上手くいきません やり方を教えてください

  • 不等式の証明

    a,b,x,yはすべて正の数で,x/a<y/bとするとき,次の不等式を証明せよ。 (問)ay-bx>0 (証明) x/a<y/b、両辺にabをかける。 bx<ayとなる。 ここでay-bx>0がすでに証明されているのではないかと私は思ったんですが、この先どう証明してよいのかわかりません。 私が解いたところまでで違うところがあれば教えてください。 よろしくお願い致します。

  • 不等式の証明と絶対値記号

    『│a│-│b│≦│a+b│≦│a│+│b│、を証明せよ』という問題がありました。  (1)まず│a+b│≦│a│+│b│の証明なんですが、両辺が正の値であることから、両辺を二乗してその差が0より大きいことを示し証明しました。  (2)次に│a│-│b│≦│a+b│の証明なんですが、解説に“常に│a│-│b│≧0というわけではないから、同じ方針、すなわち両辺の二乗の差では証明できない”とあり、別のやり方で証明していました。これを読んでなるほどと思ったのですが、次のような別の問題の解説を見て、あれっ?となってしまいました。 『│a│-│b│≦│a-b│、を証明せよ』という問題では、解説に“│a│-│b│<0のとき、不等式は成り立つから、│a│-│b│≧0のときを示せばよい”とあり、両辺の二乗の差を出して証明していました。この解説の理屈でいけば、上の問題の(2)の│a│-│b│≦│a+b│の証明も両辺の二乗の差を出して証明できるのではないでしょうか? よろしくお願いします。

  • 不等式の証明

    a,b,c,dを正の数とする。次の不等式が成り立つことを証明せよ。また等号が成り立つのはどのようなときか。 a+4/(a+1)≧3 たぶん相加平均と相乗平均の関係を使うと思うんですが、相乗平均のほうが約分できなくてうまくいきません。

  • 不等式の証明

    また、お世話になります。 (ab+cd)(ac+bd)>=4abcd a,b,c,dが正の数のとき、上記の不等式が成り立つことを証明したいのですが、どうやって証明すればいいのでしょうか? よろしくお願いします。

  • 不等式の証明問題(高1)

    こんばんわ。高1の不等式の証明で分からない問題があるんですけど、明日提出でかなり頑張ってやっているのですが、全然分からない問題がいくつか…次の2問です。ご教授ください。 (1) p^2<qr, x^2<yz, qy>0のとき、不等式(p+x)^2<(q+y)(r+z)が成り立つことを証明せよ。 (2) a>0, b>0, c>0のとき、次の不等式が成り立つことを証明せよ。 (1+a^3)(1+b^3)(1+c^3)≧(1+abc)^3

  • 不等式の証明 数学II

    A:文字がすべて正の数であるとき、次の不等式を証明せよ。 (1)A^3+B^3+C^3≧3ABC (2)1)を利用して、A^3+9>6A (1)は普通に証明できたのですが、(2)の仕方がよくわからないので、どなたかわかる方はご解説おねがいいたします。 B:A,B,Cが正の数で、A^2+B^2=C^2の時、A^3+B^3とC^3の大小関係を比較せよ この問題は根本的にまったくわかりません。 条件式からC=A+B-√2ABとなることはわかったのですが これを与式に当てはめると、ものすごい大きな数字になって計算がすごくやりにくくなります それに、(1)を利用して、ということもまったくわからないのでご解説お願いいたします

  • 不等式の証明 教えてください!

    明日テストでとても困っています。 どなたか、どうぞお願いします! *問題* a,b,c,dが正の数であるとき、次の不等式が成り立つことを証明せよ。 (ab+cd)(ac+bd)=4abcd 上式が成り立つのは、ab=cd,ac=bd すなわち、a=d,b=cのときである。 *********************** 下2段、『すなわち』でつながる理由がわかりません。 どうしたら『すなわち』になるのか詳しく教えてください! よろしくお願いします。

  • 不等式の証明と命題の真偽(基本的)

    お世話になっております。 実数a、b、cに対して、 等式 |a|+|b|+|c|=|a+b+c|…P が成立つことは、ab+bc+ca≧0 …Q が成立つための○○条件である。(○の数は特に意味なし) という問題です。証明も合わせて(不等式を証明して、等号成立条件を調べてから命題を考えてみたかった為)以下のように考えてみました。 まず証明。 与えられた等式を考える前に、不等式 |a|+|b|+|c|≧|a+b+c|…(2)を証明する。 (2)の両辺は正または0であるから、両辺の二乗の差を考えて (|a|+|b|+|c|)^2-|a+b+c|^2 =2{|ab|+|bc|+|ca|-(ab+bc+ca)} =2{(|ab|-ab)+(|bc|-bc)+(|ca|-ca)}…(3) ここで、|ab|≧ab,|bc|≧bc,|ca|≧ca だから、(3)≧0。従って不等式(2)は成立つ。等号成立は、ab≧0,bc≧0,ca≧0…(4) より、ab+bc+ca≧0 の時に限る。 よって、等式Pが成立つとき、a,b,cはQを満たす。(ここが一番曖昧です) 逆にQが成立つとき、(4)が成立つから、積の場合分けで導かれる二つの場合で、 a≧0かつb≧0かつc≧0 のときは、Pは成立つ。 a≦0かつb≦0かつc≦0 のときはPは、 左辺=-a-b-c=-(a+b+c)=右辺 より成立つ。 以上より、○○は必要十分条件が適当と思す。 以上、拙いですが頭捻ってみました。当方が微妙だと感じるのは、不等式の証明についての説明部分(解答ではb+cを一括りにしてaと(b+c)の二変数と考えて、二変数については不等式が成立つことを利用して証明してました)と、既に書いた通り、条件Pが十分条件であることの説明部分(こちらは解答なし)です。 長ったらしい文で恐縮ですが、閲覧ついでにご回答いただけると嬉しいです。宜しくどーぞ。

  • 不等式の証明

    最近証明問題が難しく感じます。 次の問題の解答よろしくお願いします。 |a|<|b|、|c|<1のとき、次の不等式が成り立つことを証明せよ。        abc+2>a+b+c