• 締切済み
  • すぐに回答を!

三角関数

(1+cosα+cosβ)cosx-(sinα+sinβ)sinxが (√(1+cosα+cosβ)^2+(sinα+sinβ)^2)sin(x+γ) γ=定角 なる過程がわかりません。 ご教示いただければ有難いです。よろしくお願いします

noname#194609

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数62
  • ありがとう数0

みんなの回答

  • 回答No.1

A=(1+cosα+cosβ), B=-(sinα+sinβ) とすると, (与式)=Acosx+Bsinx=√(A^2+B^2)(A/√(A^2+B^2) cosx + B/√(A^2+B^2) sinx)     -(1) ここでγを sinγ=A/√(A^2+B^2),cosγ=B/√(A^2+B^2) とすると,γ=atan(A/B) また,(1)式は √(A^2+B^2)(sinγ cosx +cosγ sinx)=√(A^2+B^2)sin(x+γ) =√((1+cosα+cosβ)^2+(sinα+sinβ)^2)sin(x+γ)

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 三角関数

    先程は失礼しました。 y=3(sinx)^2+4sinxcosx-(cosx)^2 が y=3* (1-cos2x)/2 + 2sin2x - (1+cos2x)/2 になる過程がよく分かりません。 sin2x-cos2x=√2sin(2x- π/4)  となる過程もよく分かりません。 sin2x+cos2X  だったらどうなるのでしょうか。

  • 三角関数の問題について

    0≦x<2πでsinx≧sin(x-π/3) を解く過程でsinx-(sinx×cosπ/3-cosx×sinπ/3)≧0から1/2sinx+√3/2cosx≧0になる解き方が分かりません。分かりやすく教えてくださいおねがいします!

  • 三角関数の問題

    やり方がまったくわかりません。 問題は↓ 「次の式をr*sin(x±α)またはr*cos(x±α),ただしr>0,αは鋭角,の形に表せ.」 (1)cosx-sinx (2)√3*sinx-cosx (3)√3*cosx-sinx (4)√3*cosx+sinx という感じです。 やり方がわかる方ヒントをください。

  • 三角関数の問題

    【2sinxcosx(2cosx+1)=0を解け。(0≦x<2π)】という問題があるのですが、 私は与式をsin2x(2cosx+1)=0として (i)sin2x=0のとき 2x=0、π ∴x=0、1/2π (ii)cosx=-1/2のとき x=2/3π、4/3π としたのですが解答を見ると 与式は問題文で与えられた通りになっていて (i)sinx=0のとき x=0、π (ii)cosx=0のとき x=1/2π、3/2π (ii)cosx=-1/2のとき x=2/3π、4/3π としているのですが、私の解答が何故違うのかは分かりません。ご回答よろしくお願い致します。

  • 三角関数

    問(1)方程式を解く 0≦x<2πの時 cos2x=cosx cos2x=cosx cos2x-cosx=0 cos(2x-x)=0 cosx=0 ∴x=0,π/2,3π/2 だと思ったのですが、答えが違います。どこが間違っているのでしょうか? 問(2)不等式を解く 3√3sinx+cos2x-4<0 これはどうやっていいか全くわかりません。先ずsinかcosかどちらかにそろえると思うのですが… 問(3)最大値、最小値を求める。 0≦x<πの時 y=cos^2x+sinx y=cos^2x+sinx =1-sin^2x+sinx (sinx=tとおき) =-t^2+t-1 =-(t^2-t)-1 =-(t-1/2)^2+5/4 と最大値が5/4とはわかるのですが最小値はどうやって求めたらいいのでしょうか?与式に0orπを代入するのですか? 問(4)最大値、最小値を求める 0≦x<π/2の時 y=cos^2-4cosxsinx-3sin^2x これは因数分解できないと思うのですが、どうすればいいのでしょう。-4cosxsinxのところがどうしても整理できないのですが(sin,cosどちらかにそろえること) どれか一つでもいいのでよろしくお願いします。

  • 三角関数の合成の問題について

    0°≦x≦90°のとき、2sinx+cosxの最大値と最小値を求めよ。(大学への数学IIP68) という問題があるのですが、 解答) 図1のようにαを定めると、45°<α<90°であり、 (図1とはx軸方向に1、y軸方向に2を取りその棒の距離を√5、なす角をαとした図です。) 2sinx+cosx=√5[cosx*(1/√5)+sinx*(2/√5)] =√5(cosx*cosα+sinx*sinα)=√5cos(x-α) 0°≦x≦90°により、-α≦x-α≦90°-αであるから、 x-α=0°のとき最大値√5を取り、 x-α=-α、つまりx=0°のとき最小値2sin0°+cos0°=1を取る。 (おわり) 何故最初にわざわざ45°<α<90°と置くのか分かりません・・・ どうかよろしくお願い致します。

  • 三角関数の方程式がわかりません.教えてください.

    三角関数の方程式がわかりません.教えてください. 角度は弧度法を用いるとして 「sin2x+sinx=0を満たすxの値を求めよ.」 という問題がわかりません 倍角の公式により,sin2x=2sinx*cosxなので 与式⇒2sinx*cosx+sinx=0   ⇒sinx(2cosx+1)=0 よって,sinx=0またはcosx=-1/2を満たすxを求めると (πは整数とする)x=nπ,2π/3+2nπ,4π/3+2nπ だと思ったのですが, 答えには (2nπ+1)π,2π/3+2nπ,4π/3+2nπ とありました. なぜx=nπ(動径が0またはπのところ)ではなく(2nπ+1)π(動径がπのところ)なのですか?

  • 三角関数で範囲

    y=cosX-2sinX という問題です。 合成すると y=√5cos(X+α) ここで、 だだしαはcosα=1/√5 sinα=2/√5 となっています。 計算上 cosα=2/√5が正しくないですか?・・・★ 例を書くと、 cosX+sinXでも √2cos(X + 1/√2) つまりcosα=1/√2になってるわけで、 ★と同じことをしているわけだから、 あれは間違っているのでは・・・ あとまだ解答は続くんですが、 0≦X≦π より α ≦ X+α ≦ π+α ここまでは納得ですが、次に -1≦cos(X + α)≦1/√5 これは円をかくと大体わかりました、 しかし次のいきなり答え。 最大値1(X = 0のとき) 最小値-√5(X = π-α のとき) π-αっていうのもよくわからないです。 アドバイスお願いします・・

  • 微分 三角関数

    y=cosx/sinxを微分すると y'={(cosx)'sinx-cosx(sinx)'}/(sinx^2) ={-sinxsinx-cosxcosx}/sin^2x ={-(sin^2x+cos^2x)}/sin^2x =-1/sin^2x で ={-(sin^2x+cos^2x)}/sin^2xからどうして =-1/sin^2xになるんですか? 教えてください

  • 三角関数の導関数

    sin'=lim((sin(x+h)-sin(x))/h) =lim((2*cos(x+h/2)sin(h/2))/h) =lim(cos(x+h/2)*2*(sin(h/2)/h)) =lim(cos(x+h/2)*(sin(h/2)/(h/2))) =cosx という、sinの導関数の求め方があります。 (手元に、数学IIIの検定教科書が3冊ありますが、どれを見てもこの方法で証明していました。) ところで、この sin'=lim((sin(x+h)-sin(x))/h) =lim((2*cos(x+h/2)sin(h/2))/h) の部分が全く理解できません。 4時間ほどこの式変形をしようと苦闘しましたが、できませんでした。 多少遠回りをして、 (sinx)'=lim(sinx(cosh-1)/h+cosxsinh/h)=cosx なら、わりとすぐに証明できたのですが、(30分くらい?) 上記の方法は式変形の方法すら思いつきませんし、そのための手がかりも全く思いつきません。 高校生が皆理解できるということは、さぞカンタンな変形なのだろうと思いますが…どうやれば、このような式変形ができるのでしょうか? 詳しくご教授願います。