• ベストアンサー
  • 困ってます

二次関数  範囲

問題は 二次関数y=f(x)=ax^2-(a+1)x+2a+2(a>0)があり、二次関数方程式f(x)=0の相異なる2実数解α、βが次の条件を満たすとき、αのとり得る範囲を求めます (1)α<4<β どうして、f(4)=14a-2<0 なのでしょうか? 答えは0<a<1/7 (2)2<α<3<β どうして、f(2)=4a>0 f(3)=8a-1<0になるのでしょうか? 答えは0<a<1/8 これはどのように求めるのかわかりません。 お願いします

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数200
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • KENZOU
  • ベストアンサー率54% (241/444)

>(2) がわかりません。 図を書いてかんがえたのですがわかりません そうですか、しからばy=f(x)のグラフの復習からはじめましょうか。さて、  y=ax^2-(a+1)x+2a+2 (a>0) (1) で、a>0ですからこのグラフは下に凸の放物線となりますね。α、βの2つの実根をもちますからこのグラフはx軸の2点を通ることになりますね。この2点とはxの値の小さいほうからいうとx=α,x=βの2点(α<β)ということになります。ここまでいいですか。今、y=f(x)のグラフは図がここではうまく書けないのでアレですが、イメージ的にはには下図のようになりますね。   y軸   |  \   3     /   |   \  ↓    /  ---------\---------/-----x軸   |  ↑  \   /       2   \ / そうすると絵より  f(2)=a・2^2-(a+1)・2+2a+2=4a>0 (2)  f(3)=a・3^2-(a+1)・3+2a+2=8a-1<0 (3) となりますね。(2)より  a>0  (4) (3)より  a<1/8 (5) 従って求めるaの範囲は(4)(5)より  0<a<1/8 となります。  

参考URL:
 

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 解の範囲について

    問題は 二次関数y=f(x)=ax^2-(a+1)x+2a+2(a>0)があり、二次関数方程式f(x)=0の相異なる2実数解α、βが次の条件を満たすとき、αのとり得る範囲を求めます (1)α<4<β 答えは0<a<1/7 (2)2<α<3<β 答えは0<a<1/8 これはどのように求めるのかわかりません。 お願いします

  • 二次関数の問題なので

    二次関数の問題なので 例えばですが y = x^2 + 2kx + k^2 - 2 という二次関数の方程式があるとします。 その方程式f(x)=0が実数解α、β(α≦β)をもつとき、次の問題に答えよ。 という設定があり、(1)の問題 α、βがα≦1≦βをみたすようにkの値の範囲を定めよ。 だったとします。 この問題を解くにあたって、既に問題文に「実数解α、β(α≦β)をもつ」とある場合 もう判別式をつくる必要はないのですか? 普通なら、「判別式が正」「この問題の場合、軸の場合分け」「x=1のときyが負」という三つの条件が必要ですよね? しかし、既に問題文に「絶対二つの解をもつ」と書いてある場合は、判別式は必要ありませんか?

  • 二次関数

    二つの二次関数f(x)=x^2-2x+2a^2, g(x)=-x^2+2(2a-1)x-4a^2+7a-2がある。ただし、aは0<a<2を満たす定数とする。 (2)a≦x≦a+1におけるf(x)の最小値をaを用いて表せ。 (3)a≦x≦a+1におけるf(x)の最小値をmとする。a≦x≦a+1において、つねにg(x)<mとなるようなaの値の範囲を求めよ。 解法から教えてください。よろしくお願いします。

その他の回答 (1)

  • 回答No.1
  • KENZOU
  • ベストアンサー率54% (241/444)

関数y=f(x)はa>0より下に凸の放物線となりますね。いま、 f(x)=ax^2-(a+1)x+2a+2 (a>0) が相異なる2実根α、βを持つためには判別式D>0でなければなりません。  D=(a+1)^2-4a(2a+2)=-(7a-1)(a+1)>0 (1) これからaの範囲を求めると  -1<a<1/7  (2) となりますね。ところでa>0ですから、結局aの範囲は  0<a<1/7  (3)  2実根α、βはα<4<βの関係にありますから、下に凸の放物線はx軸とx=α,βの2点を通りますね。x=4はこの間にあるわけですから  f(4)=14a-2<0 (4) となりますね。これは図を書くとすぐ分かります。(4)からa<1/7が求まりますが、これは(3)を満たしていますね。 問題2は問題1と同じようにして絵を書いて考えればすぐ分かると思います。TRYしてみてください。

共感・感謝の気持ちを伝えよう!

質問者からの補足

(2) がわかりません。 図を書いてかんがえたのですがわかりません お願いします

関連するQ&A

  • 二次関数

    不等式x^2-4x+3≦0を満たすすべてのxに対して、不等式x<3-ax-2x^2が成り立つとき、定数aの値の範囲を求めよ。 x^2-4x+3≦0より、xの範囲は1≦x≦3 x<3-ax-2x^2 これをf(x)=3-ax-2x^2-xとxの二次関数とおいたとき、 f(x)=2(x+(a+1/4))^2-(a^2+2a-47/16)…x軸は-(a+1/4) (1)3<-a+1/4…11>a x=3で最小値-3-18 -3-18≧0 これが(1)を満たすのでa≦6…(1)’ (2)1≦-a+1/4≦3…-11≦a≦-3 x=-a+1/4のとき最小値-(a^2+2a-47/16) -(a^2+2a-47/16)≧0 これが(2)を満たすので-4√3≦a≦-3…(2)’ (3)-a+1/4<1…a>-3 x=1のとき最小値-a -a≧0 これが(3)を満たすので-3<a≦0…(3)’ この三つで場合わけをして考えたら、答えはa≦6となりました。 でも答えはa<6になっています。 どこかで計算ミスしているんでしょうか? それともやり方が間違っているんでしょうか? 長々とすみません。 回答お願いします。

  • 二次関数

    二次方程式x^2-(a-2)x+(a/2)+5=0が1≦x≦5の範囲に異なる2つの実数解をもつとき、定数aの値の範囲を求めよ。 この問題は、どうやって解けばいいんですか? y=x^2-(a-2)x+(a/2)+5と置いて、二次関数を利用して解くのはわかっているんですけど、それをどこから解いていいのかわかりません。 解る人がいたら、教えて下さい。

  • 二次関数の解の範囲の問題の条件について

    さっそくですが、質問させていただきます。 二次関数の解の範囲の問題で、f(x)=ax^2+bx+cが相異なる実数解α、β(α<β)もつとき、 (1)1<α<βをみたす条件は  ⅰ)判別式D=b^2-4ac>0  ⅱ)軸の式x=-b/2a>1  ⅲ)f(1)=a+b+c>0 ですが、 (2)1<α<2<β<3をみたす条件は  ⅰ)f(1)=a+b+c>0  ⅱ)f(2)=4a+2b+c<0  ⅲ)f(3)=9a+3b+c>0 となりますが、 (2)の場合、判別式が条件にならないのは、f(2)<0で、実数解を2つ持つことが明らかなので必要はありませんが、軸の式の条件、 1<-b/2a<3が必要にならない理由がどうもピンとしません。 お分かりかた、教えて頂けないでしょうか? よろしくお願いします。

  • どなたか二次関数を教えて頂けないでしょうか

    どなたか二次関数を教えて頂けないでしょうか aを実数の定数とする。xの二次関数 y=-x^2+2ax-4a-12...(1) のグラフをCとする。 Cの頂点をPとすると、 P(a,a^2-アa-イウ) である。 (1)Cがx軸と異なる二点で交わるようなaの値の範囲は a<エオ,カ<a である。 (2)二次関数(1)の最大値が20となるようなaの値は a=キク,ケ である。 (3)a=ケのとき、 f(x)=-x^2+2ax-4a-12 とし、kを正の定数とする。 k≦x≦4kにおけるf(x)の最大値が20で、最小値がf(4k)となるようなk の値の範囲は コサ/シ≦k≦ス である。このとき、g(k)=f(k)-f(4k)とすると、g(k)のとりうる値の範囲は セ≦g(k)≦ソタチ である。 これが全く分かりません。 どなたか助けて下さい。 よろしくお願い致します。

  • 数IA二次関数の問題です。

    以下のような二次関数の問題があります。 二次関数f(x)=x^2-2ax+2a^2(aは実数の定数)について 0≦x≦1における最小値をmとするとき次の問いに答えよ。 (1)この二次関数のグラフの頂点の座標をaを用いて表せ (2)mをaを用いて表せ (3)m=5のときaの値を求めよ このうち(1),(2)については自分で答えを求める事ができそれぞれ合っていました。 (1)座標(a,a^2) (2)aを場合分けして a<0の場合、m=2a^2 0≦a≦1の場合、m=a^2 1<aの場合、m=2a^2-2a+1 (3)について回答を見るとa=2とa=&#65293;√10/2でした。 (3)の答えの導き方を教えてください。なぜこうなるのか良く分からないです。 よろしくお願いします。

  • 二次関数の問題教えて下さい

    ★二次関数y=ax^2+3x+aの値が、全てのxの値について正となるようなaの範囲を求めよ。 という問題の解き方を教えて下さい。 ★それと、次の不等式の問題を解いたのですがこれであっていますか?  不等式(a-1)x^2+4x+2a>0がxのどんな値に対しても成立するように、定数aの値の範囲を定めよ。  (a-1)x^2+4x+2a=0の判別式をDとすると  D=16-8a^2+8a  D<0であればよいから  (a+1)(a-2)>0       a<-1 2<a 以上の二つについてよろしくお願いします。

  • 二次関数の問題がわかりません!

    凄く急ぎの質問です! 高1の二次関数の問題がわかりません! 以下の問題の解き方&答えを教えてください! 【1】 (1)2次関数y=x^2+kx+4のグラフがx軸と接するとき、実数kの値と接点の座標を求めよ。 (2)2次関数y=x^2-2x+k+1のグラフがx軸と2点で交わるとき、実数kの値の範囲を求めよ。 【2】 aを実数の定数とする。二次関数 f(x)=x^2-2ax+a ( 1≦x≦2 )について。 (1)最小値を求めよ。 (2)最大値を求めよ。 【3】 (1)実数x、yがx^2+y^2=1をみたすとき、x+y^2の最大値、最小値を求めよ。 (2)実数x、yがx^2+y^2=1をみたすとき、2x-yの最大値、最小値を求めよ。 よろしくお願いします!

  • 二次関数の問題について少し納得のいかない部分が…

    二次関数の問題について少し納得のいかない部分が… タイトル通りです。以下がその問題です。 aを正の定数、bを実数の定数とし、f(x)=ax^2-4ax+6a+b とする。 a=1であるときを考える。 放物線y=f(x)とx軸が異なる2点で交わり、それらのx座標がいずれも 0<x<5 の範囲にあるとき、 bの値の範囲を求めよ。 この問いの解は、-6<x<-2 となっているのですが、-11<x<-2 ではないのですか? f(0)=b+6>0, f(2)=b+2<0 であるから… という説明が記されているのですが、どうも合点がいきません。 f(0)のときのbについての不等式はいいのに、f(5)のときは駄目なのでしょうか? この質問に対する回答に時間を割いていただける方、回答を頂ければ幸いです。

  • 数学I 二次関数

    わからない問題があり、困ってるのでわかる方は教えてください!! 二次関数f(x)=x^2-2(a+1)x+a^2+2a-3(aは定数)がある。 (1)y=f(x)のグラフの頂点は(a+ア、イウ)である。 →これは大丈夫ですっ。ちなみに答えは(a+1、-4)です。 (2)y=f(x)のグラフがx軸の正の部分、負の部分とそれぞれ一点で交わるとき、 aの値の範囲はエオ<a<カである。 →これも大丈夫ですっ。答えは-3<a<1 (3)不等式x^2-x-2≦0を満たすすべての実数xについてf(x)≦0となるとき、 aの値の範囲はキク≦a≦ケである。 →この問題の解き方がわかりませんっ!!答えは-1≦a≦0となっているのですが… よろしくお願いしますっ。

  • 二次関数の問題についてです。

    急ぎの質問です。 二次関数の問題がわかりません。 以下の問題の解き方&解答を教えてください! 1. aを実数の定数とする。二次関数 f(x)=x^2-2ax+a ( 1≦x≦2 )について。 (1)最小値を求めよ。 (2)最大値を求めよ。 2.(1)実数x、yがx^2+y^2=1をみたすとき、x+y^2の最大値、最小値を求めよ。 (2)実数x、yがx^2+y^2=1をみたすとき、2x-yの最大値、最小値を求めよ。 よろしくお願いします!