• ベストアンサー
  • すぐに回答を!

三角関数 教えてください

三角関数の問題を解いているのですが、途中からわかりません。 ⊿ABCは、3辺の長さがAB=sinθ、BC=cos2θ、CA=cosθ、 ∠BAC=π/3の三角形である。ただし、0<θ<π/4である。 余弦定理を用いてθの値を求めなさい。 BC^2=AB^2+CA^2-2AB×CAcosA に代入していく。 cos^22θ=sin^2θ+cos^2θ-2・sinθ・cosθ・(1/2)  sin^2θ+cos^2θ=1より、 cos^22θ=1-sinθ・cosθ  sin^22θ+cos^22θ=1より、 1-sin^22θ=1-(1/2)sin2θ←ここがわかりません。 sin^22θ+cos^22θ=1 を使って左辺はわかったのですが、右辺がなぜこうなったのか全くわかりません。 計算の過程をお願いします。

noname#159016

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数303
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

こんにちは 右辺の1-sinθ・cosθ・・・(★)が 1-(1/2)sin2θ・・・(●)になったところが分からない、 ということでよろしいのでしょうか? これは2倍角の公式が使われています。 sin2θ=2sinθcosθ ・・・(*) という式がありますよね。 この*式の左辺・右辺を1/2倍してみてください。 (1/2)sin2θ=sinθcosθ となります。 これを★に代入してください。 ★式=1-(1/2)sin2θ=●式 となります。 もし質問内容と違うところを解説していたらごめんなさい。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 大丈夫です。 私がわからないところでした。 とてもわかりやすかったです。

関連するQ&A

  • 三角関数 この問題を教えてください

    ⊿ABCは、三辺の長さがAB=sinθ、BC=cos2θ、CA=cosθ、∠ABC=三分のπの⊿である。ただし、<θ<四分のπである。余弦定理を用いてθの値を求めなさい。 解答の解説には BC^2=AB^2+CA^2-2AB×CAcosAなので、 二倍角の公式などを使って整理すると、 2sin^2 2θ=sin2  と書いてありました。 解説の説明が省略されすぎて全くわかりません。 BC^2=AB^2+CA^2-2AB×CAcosA を二倍角の公式をどのように計算すると2sin^2 2θ=sin2になるのですか?

  • 数学

    三角形ABCは、3辺の長さが、AB=sinθ、BC=cos2θ,CA=cosθ, ∠BAC=π/3の三角形である。ただし、0<θ<π/4である。 余弦定理を用いてθの値を求めなさい。 この計算過程と答えがわからないので、わかりやすく丁寧に教えてください。お願いします。

  • 三角関数

    「AB=2,BC=3,CA=4の△ABCがある。∠BACの2等分線と辺BCとの交点をDとする。線分ADの長さを求めよ。」 という問題で、△BADの余弦定理からADを求めると、√6、1/2√6となりました。回答は√6なのですが、1/2√6が不可である根拠を教えてください。ちなみに解答は面積から求める方法でした。

その他の回答 (1)

  • 回答No.1
noname#146456

2倍角の公式 sin2θ=2sinθcosθ の両辺を2で割ると (1/2)sin2θ=sinθcosθ になります。 よって 1-sinθcosθ=1-(1/2)sin2θ となります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 おかげでわかりました

関連するQ&A

  • 数学IIの微分積分の問題ですが。

    問1.△ABCは3辺の長さがAB=sinθ,BC=cos2θ,CA=cosθ,∠BAC=π/3の三角形である。余弦定理を用いてθの値を求めよ。ただし、θは第1象限の角とする。 問2.3次曲線y=x^3・・・・(1)と放物線y=mx^2+nx・・・・(2)があり、(1)、(2)はx座標が2の点で共通な接線lをもっている。このとき、m,nの値と接線lの値をそれぞれ求めよ。

  • 三角関数の問題で

    高校1年の息子から質問されましたが余弦定理?などでも解けませんでした。 どなたか、教えて頂ければお願いします。 問題 「三角形ABCで、角B=30℃、辺AB=2、辺AC=ルート2の時、辺BCの長さを求めよ」

  • 三角関数

    三角関数の変換についての質問です。 -sin(y) + sin(x+y) = 2cos{(x+2y)/2} * sin(x/2) 左辺から右辺の変換の詳細を教えていただきたいです。 よろしくお願いします。

  • 三角関数

    三角形ABCはAB=AC=1の二等辺三角形で∠CAB=2θ(0<θ≦π/4)であるとする。点Cから線分ABに垂線を下ろしたときの交点をHとする。 (1)線分BCの長さをsinθを用いて表せ。 (2)三角形CHBに着目し、線分CHの長さをsinθ、cosθを用いて表せ。 (3)線分AHの長さがcos2θと表されることに注意して、cos2θをsinθを用いて表せ。 よろしくお願いします。

  • 三角関数の問題です

    三角関数の問題です。0を原点とする座標平面において、2点P、QをP(cosΘ,sinΘ),Q(√3sin2Θ,√3cos2Θ)とする。ただし0<Θ<π/2とする。 sin2Θ=cos(π/2―2Θ),cos2Θ=sin(π/2―2Θ)であるから、3点0、P、Q が同一直線上にあるのはΘ=π/□の時である。 □の求め方がわかりません。どなたか教えてください。宜しくお願いします。

  • 三角関数の問題

    三角関数の問題  「(1-conθ)/sinθ+(1-sinθ)/conθ の最大値、最小値を求めよ   ただし 0<θ<π/2」 という問題なのですが、式を変換して  (sinθ+cosθ-1)/sinθcosθ となって、三角関数の合成と二倍角の公式で  { 2√2sin(θ+π/4)+2 }/sin2θ となりましたがそこから先が分かりません。合成などしなくて良いのでしょうか。誰かヒントをください!!!

  • 三角比の問題です

    次の問題が、答えは分かるのですが綺麗な解答が得られません。 BC=3,CA=8,AB=10の三角形ABCにおいて、∠B:∠Cをもっとも簡単な整数比で求めよ。 ∠B=x, ∠C=ax とおいて余弦定理を駆使すれば、 cos(ax)=-9/16, cos(x)=3/4 が得られるので、あとはあてずっぽにaに2,3,4・・・と代入していくと、 a=3で成り立つので∠B:∠C=1:3 と一応分かるのですが、 とてもきれいな解答とは言えないので良いヒントをください!

  • 三角関数について

    余弦定理、正弦定理などの分野は、三角関数のうちに入りますか? それとも、三角関数はπを使ったものだけが入るのでしょうか? 三角比は三角関数とは別物?違う分野? よくわからないので、どなたか教えてください。

  • 三角関数の問題です。

    三角関数の問題です。 cos3θ+sin2θ+cosθ>0を満たすθの範囲を求めよ。ただし、0≦θ<2πとする。 という問題です。次の様に解答したのですが、間違いや、つっこまれそうな所があったら指摘して下さると助かります。 cos3θ=4cos^3θ-3cosθより、 cos3θ+sin2θ+cosθ=4cos^3θ-3cosθ+2sinθcosθ+cosθ =cosθ(4cos^2θ+2sinθ-2)=cosθ{4(1-sin^2θ)+2sinθ-2} =cosθ(-4sin^2θ+2sinθ+2)=-2cosθ(2sinθ+1)(sinθ-1)>0 ∴cosθ(2sinθ+1)(sinθ-1)<0 (1)cosθ>0のとき、(2sinθ+1)(sinθ-1)は負 2sinθ+1>0, sinθ-1<0 のとき、これを満たすθの範囲は、0≦θ<π/2,11/6π<θ<2π 2sinθ+1<0, sinθ-1>0 のとき、これを満たすθは存在しない。 (2)cosθ<0のとき、(2sinθ+1)(sinθ-1)は正 2sinθ+1>0, sinθ-1>0 のとき、これを満たすθは存在しない。 2sinθ+1<0, sinθ-1<0 のとき、これを満たすθの範囲は、7/6π<θ<3/2π (1),(2)から、求めるθの範囲は、0≦θ<π/2,7/6π<θ<3/2π,11/6π<θ<2π 宜しくお願いします。

  • 三角関数の合成

    三角関数の合成 π/6≦θ≦5/6πのとき、sin{2θ-(π/6)}-cos2θ の最大値と最小値を求めよと言う問題があります。 この式が √3/2 sin2θ-3/2 cos2θ という式になるのはわかりました。でもここからどのようにして合成するのでしょうか? 三角関数の合成の式が√(a^2+b^2) sin(θ+α) なので√3 sin(2θ+α) になるのはわかるのですがどうやってαの部分を出すのかわかりません… 図を書いて求めようとしたのですがさっぱりで… どなたか教えてください。よろしくお願いしますm(__)m