- ベストアンサー
- すぐに回答を!
三角比の問題です!
この問題よろしくお願いします^^ できれば、途中式も教えていただけたら嬉しいですm(__)m AB=c、BC=a、CA=bである△ABCにおいて、a:b:c=5:3:7であるという。 (1)このときのcosC (2)△ABCの面積が15√3であるときのcの値、外接円の半径、内接円の半径 去年の日本歯科大の入試問題らしいです゜゜

- 数学・算数
- 回答数1
- ありがとう数0
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- info22_
- ベストアンサー率67% (2650/3922)
(1) 余弦定理の公式に当てはめるだけの単純な計算問題。 公式はどんな教科書にも載ってるから確認して置いてください。 cosC=(a^2+b^2-c^2)/(2ab) これに a=5k,b=3k,c=7k(k>0)を代入すれば答えがでます。 cosC=(25+9-49)/(2*5*3)=1/2 ∴∠C=60° (2) a+b+c=2sとおくと 三角形の面積公式(参考URL参照) S=ab*sinC/2=rs=abc/(4R) を使うだけの問題。 s=(5+3+7)k/2=15k/2,sinC=(√3)/2 より 15√3=15(k^2)(√3/2)/2 ∴k=2 15√3=r(15*2/2) ∴内接円半径r=√3 15√3=5*3*7*2^3/R ∴外接円半径R=56/√3=56(√3)/3
関連するQ&A
- 三角比の問題です
数学IAの問題です 最初の問題を余弦定理を使い解こうとしたのですが、答えがcosC=1になってそこからがわからなくなりました 解き方や途中式を教えていただきたいです 面倒かと思いますが、できる方協力してくださるととてもありがたいです よろしくおねがいします △ABCでAB=√7、BC=3、CA=2とします (1)cosCはなにか ∠Cはなにか (2)△ABCの面積はなにか (3)cosA、sinBはなにか (4)△ABCの外接円の半径はなにか (5)∠Cの二等分線と辺ABの交点をDとすると AD、DCはなにか 多くてすみません 全部じゃなくてわかるところまででもいいのでお願いします
- 締切済み
- 数学・算数
- 大至急 三角比・三角関数の問題
大至急 三角比・三角関数の問題 学校のテキストで分からない問題があります もしよければ途中式を教えてください 1△ABCにおいて、AB=6 BC=7 CA=8とし、∠BACの2等分線が辺BCと交わる点をDとする。 (1)cos∠ABCの値を求めよ (2)△ABCの外接円の半径および△ABCの面積を求めよ (3)線分BD、CD、ADの長さを求めよ (4)△ABD,△ACDの内接円の半径をそれぞれr1、r2とするとき、その比を求めよ 2半径1の円に内接し、∠A=60°である△ABCについて (1)BCの長さを求めよ (2)3辺の長さの和AB+BC+CAの最大値を求めよ 3鋭角三角形ABCにおいて、AB=5、AC=4で、△ABCの面積が8である (1)sinA,cosAの値を求めよ (2)△ABCの外接円の半径を求めよ (3)△ABCの内接円の半径を求めよ 4AB=1、AC=√3、∠A=90°の直角三角形ABCがある。頂点A以外と共有点をもたない直線をlとし、2点BCから直線 lにおろした垂線の足をD、Eとする。 直線lをいろいろとるとき、4角形BCEDの周の長さLの最大値を求めよ よろしくお願いしますm(_ _)m
- 締切済み
- 数学・算数
- 数学I 三角比の図形(正弦・余弦定理)の問題
基本的な問題ばかりですが解いてみたものの回答が手元になくて困っています。多いですがよろしくお願い致します。 1.△ABCでAB=4 , AC=5 , BC=2とする。 (1)cosAを求めよ。 (2)△ABCの面積を求めよ。 (3)外接円の半径を求めよ。 2.△ABCで∠A=60°, AB=3 , AC=4とする。 (1)BCを求めよ。 (2)△ABCの外接円の半径を求めよ。 (3)△ABCの面積を求めよ。 3.△ABCでAB=5 , AC=6 , BC=√91とする。 (1)∠Aを求めよ。 (2)△ABCの外接円の半径を求めよ。 (3)△ABCの面積を求めよ。 4.△ABCでAB=7 , AC=5 , ∠A=60°とする。 (1)BCを求めよ。 (2)△ABCの外接円の半径を求めよ。 (3)△ABCの面積を求めよ。 5.△ABCでAB=2 , AC=4 , BC=3とする。また∠Aの二等分線とBCの交点をDとする。 (1)BDを求めよ。 (2)cos∠Bを求めよ。 (3)ADを求めよ。
- ベストアンサー
- 数学・算数
- 三角比の問題。途中式を教えてください
三角比の問題。解答に途中式が載ってなく解き方がわかりません。途中式を教えてください。 △ABCにおいてsin∠A/√5=∠sinB/√2=sinCのとき (1)3辺の長さの比AB:BC:CAと最大角の大きさを求めなさい。 答えAB:BC:CA=1:√5:√2、 ∠A=135° (2)△ABCの外接円の半径が2の時、△ABCの面積を求めなさい。 答え4/5 よろしくお願いします。
- ベストアンサー
- 数学・算数
- 三角比の問題がわかりません
△ABCにおいて、AB=3、BC=3√3、∠CAB=120°とする。 (1)CA= (2)cos∠ABC= (3)△ABCの外接円の半径R= どの公式を使うのかわかりません。教えてください。
- ベストアンサー
- 数学・算数