• ベストアンサー
  • すぐに回答を!

気体分子運動論 2原子分子 3原子分子 なぜ振動は

こんにちは、気体の分子運動論について確認させてください。また質問をさせてください。どうぞ宜しくお願いします。 気体の運動エネルギーを考える際、 単原子分子の場合、内部エネルギーの変化 ΔU = 3/2 nRΔT となりますが、この3の意味は単原子分子のとる自由度の数だと教わりました。 そしてその自由度とは、XYZ方向への並進運動とのことですね。 二原子分子の場合、これら3自由度の並進運動に加え、回転の自由度を加えるとのことでした。 回転は、二原子分子の線分をたとえば、z軸にそろえて載せた場合、X軸を回転軸とする回転、Y軸を回転軸とする回転の二つが加えられる。したがって、合計5の自由度があり、ΔU = 5/2 nRΔT となる。 Q1: もうひとつZ軸を軸とした回転(つまり鉛筆を両方の掌ではさんで回すような回転)については、他の二回転に比べて運動エネルギーが小さいため考えない、と理解しているのですが、いかがでしょうか。 Q2:並進、回転運動の他にも、自由度として振動が考えられますが、なぜこれは加えないのでしょうか。 また、三原子分子の場合は、二通りあり、直線分子の場合、非直線分子の場合に分けられると知りました。ただ、三原子分子の場合の内部自由エネルギー変化についての式が与えられておらず、考えてみました。 Q3: 直線分子の場合、二原子分子と同じ考えで、並進、回転運動の自由度の合計は5となりそうですが、どうでしょうか。ただ、ここでも振動をどう扱うのか分かりません。振動の自由同は、三原子直線型分子の場合、4つあるようですが、これらの振動は考慮しなくて良いのでしょうか。 Q4: 非直線分子の場合、回転の自由度は一つ増えて合計3になるそうですが、これは、先程、二原子分子の際に考慮に入れなかった回転、Z軸を回転軸とする回転、が無視できなくなった、ということでしょうか。すると、ΔU = 6/2 nRΔT となりそうですが、いかがでしょうか。 また、しつこいようですみませんが、振動はどうなのでしょうか。非直線分子の場合、振動の自由度は3あるそうですが、このことは内部エネルギー変化を考える場合に考慮に入れる必要はないのでしょうか? 以上となるのですが、私の理解があっているかどうかも含め、是非質問に回答頂ければ幸いです。どうか宜しくお願いします。 分かり難い記述があるようでしたら、訂正いたしますゆえ、どうか重ねて宜しくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数7
  • 閲覧数4557
  • ありがとう数8

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.4
  • Quarks
  • ベストアンサー率78% (248/317)

>振動は含めないと言うことは、考慮すべきは並進運動と回転運動ですが、並進運動 >は常にXYZの三つ、回転については直線型分子だと2、屈曲した分子ならば3と、「常 >に」考えてもよいでしょうか。 > >『Q4:これも、ご推察のとおりです。3個以上の原子からなる"剛体"としての >分子の場合、古典物理学的には自由度は最大6なのですね。』 >ということは、この考えは正しいかと存じますが、いかがでしょうか。 >例えば、4原子分子の場合でも、直線ならば回転は2、屈曲ならば3でしょうか。 > >複雑な形をした分子、例えば、人間のように四肢があるような形をした分子の場合、 >右手だけの回転、左足だけの回転、など複雑な回転機構が考えられそうですが、剛 >体と考えるならば、このような回転の自由度は考慮しなくてよさそうですが、いか >がでしょうか。  はい、そのとおりです。  3原子分子以上の多原子分子でも、直線状の分子なら、回転の自由度は2、それ以外の形状なら回転の自由度は3となります。どんなに複雑な形状を持つ分子の場合でも、剛体なら、回転の自由度は2または3となります。これは、次のように説明されます。  多数の粒子が、互いの相対的な位置関係を崩さないで、まとまり(粒子系)を作っているとします。つまり"剛体"を、極く小さな構成粒子の集団と見なしてしまおうということですね。  任意の座標系を用意して、粒子系の全ての粒子の座標を確定するには、何種類の情報が必要なのかを数え上げたのが、自由度と呼ばれる数値です。  そのうち、特に、粒子系の中の任意の1つ(Pとしましょう)に固定した座標系(Pは座標の原点に在るものとします)を考え、物体系が任意の回転をしたとき、他のすべての粒子(Qi)の位置を表そうとすれば一体いくつの情報量が有れば済むのかを数え上げたものを、回転の自由度と呼ぶのです。剛体の回転を考える時には、粒子間の相対的な位置が確定しています(互いの相対的な距離は変わりません)から、必要な情報は、Qiが、Pから見て、x軸周りにθ、y軸周りにφ、z軸周りにδ回転した、という情報だけです。  たとえば、地球から見ると、各星座は一斉に同じ方向に日周・年周運動しているように見えます。これは、地球と星座を作っている恒星とが、相対的な位置関係を保ったままになっているので、或る天体(地球)から見て、任意の恒星(ペテルギウス)の回転さえ知ることができれば、他の任意の恒星位置が確定されるのと同じことです。  つまり、θ,φ,δの3つの情報を知ることができれば、全てのQiの、Pに対する相対的な位置を確定できるわけです。このことを、回転の自由度が3であるというのです。  ただし、物質系の粒子の位置関係によっては、θ,φ,δのどれかが何°であっても位置関係確定には影響しないこともあります。たとえば、x軸上に全ての粒子が配置されているとき、x軸周りの回転角度θがいくつかという情報は価値がありません。無意味ですね。このような場合は、回転の自由度がθの分だけ、1つ減ることになります。しかし、多粒子系なら、2方向の軸周りの回転情報が同時に無意味になることはありえません(x軸上とy軸上の2つの軸方向にすべての粒子が並ぶというようなことはあり得ません)から、剛体の回転の自由度は最低でも2、最大でも3なのです。

共感・感謝の気持ちを伝えよう!

その他の回答 (6)

  • 回答No.7
  • htms42
  • ベストアンサー率47% (1120/2361)

1つ間違いがありました。 HCNは直線形です。 H-C≡N ついでにアセチレンの構造も H-C≡C-H どちらについてみても励起しやすい変角振動があります。 伸縮振動はエネルギーがかなり高いです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとう御座います。勉強になります。

  • 回答No.6
  • htms42
  • ベストアンサー率47% (1120/2361)

#5です。 >複雑な形をした分子、例えば、人間のように四肢があるような形をした分子の場合、右手だけの回転、左足だけの回転、など複雑な回転機構が考えられそうですが、剛体と考えるならば、このような回転の自由度は考慮しなくてよさそうですが この点について補足します。 #5で「3原子分子以上になると剛体モデルからのずれが目立ってくる」と書きました。 分子の変形が起こりやすくなるということと同じです。 原子間隔の変わるような振動は起こりにくいですが、折れ曲がりの振動とか首振り運動は起こりやすくなってきます。これはご質問の「人が手だけを回すような運動は起こりやすいのではないか」と同じ内容です。 量子力学的に表現しなくてはいけないような問題でも古典的に考えた力学モデルでの判断は当てはまります。起こりやすい振動と起こりにくい振動の違いは量子力学的に言えばポテンシャルの深さの違いになると思いますが古典論的にはばね定数の大きさです。結合の強さ=束縛の強さです。 例としてメタノールCH3-OHを考えてみます。 C-O-Hの折れ曲がりの振動は変角振動です。これは水の時にもあった起こりやすい振動です。メタノールではさらにC-Oを回転軸とするO-Hの首振り運動が出てきます。これは分子全体の回転ではない部分の回転です。手を回す運動に似ていますね。3つのC-Hが伸びている環境の中での回転ですから自由回転ではなくて少し波打つような回転になるでしょう。でも振動よりは起こりやすい運動です。 メタノールの77℃での比熱比は γ=1.203です。 前にやったのと同じような計算でγ=8/6からのずれを調べてみます。 (8+β)/(6+β)=1.2 で解くと β=4になります。 熱の配布先の自由度は剛体として見た時よりも4増えていることになります。大きい変化です。 10℃のメタンCH4の比熱比がγ=1.31であるのと比べると-O-Hの影響が大きく出ているということが分かりますね。メタンの場合の自由度の増加は10℃の時で0.7です。メタンでもC-Hの長さを変えない変角振動が一番起こりやすいです。傘を開いたり閉じたりするような変角振動は3重に縮退していますから効果が大きいです。 起こりやすい振動、起こりにくい振動を数値で確かめたい時は「振動スペクトル」を調べるといいです。 化学便覧の「振動スペクトル」の章に振動モードの図と振動スペクトルの値とが載っています。 振動スペクトルの振動数は赤外線領域にありますが回転運動、首振り運動の振動数はマイクロ波の領域です。 マイクロ波の領域の振動は常温では十分に励起していると考えていいものになります。 私の住んでいる市の図書館には「化学便覧」が置いてあります。 あなたの住んでいるところではどうでしょう。 個人で持つにはちょっとしんどい本です。 私は第3版を古本で手に入れて持っています。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

重ねまして、お礼申し上げます。理論的に求めたものと実際に測定したものの違い、そしてその違いがどうして生じるのか、など物理はとても面白いですね。私は現在、半ば独学で物理を勉強しなおしておりますが、こちら教えてgooで色々なことを確認させて頂いたり、解法をご教示頂いたりととても助かっております。皆様、ありがとう御座います。

  • 回答No.5
  • htms42
  • ベストアンサー率47% (1120/2361)

ここに出てきている考察は全て比熱の測定で得られる結果をもとに行われてきたものです。 一般的に「エネルギーの表現は?」というものではありません。 「エネルギーの等配分の法則」はその測定から導かれたものです。 気体の比熱の値が気体の種類によらず自由度の数だけで決まっているように見えるというものです。1自由度あたり1モルでR/2です。金属の比熱が自由度6の等配分則に従っているという事も見つかりました。これはデュロンプティの法則と呼ばれています。気体の温度、圧力、体積の関係が気体の種類に依らないという性質につながる性質です。 比熱ですから外部から加えた熱がどのような温度上昇を引き起こすかを調べています。物質内部にエネルギーの分配先がたくさんあれば比熱は大きくなります。質量には関係なくて自由度だけで決まっているというのが大きな発見だったと思います。このような「物質の種類によらないという性質」がどのように根拠に基づいて出てくるのかを示すモデルが剛体なのです。 まずどのような数値が得られているかを見てみましょう。 (以前の理科年表には比熱比の値が載っていましたが最近のものにはなぜか載らなくなくなりました。化学便覧には定圧モル熱容量Cpと比熱比γ(=Cp/Cv)の値が載っています。定積モル熱容量の値はこの2つから計算できます。・・・比熱比の値は現在、音速の測定から求められているそうです。) 測定はまず常温、常圧付近で始まったのだと思います。 1原子気体で He γ=1.66、Ne 1.64、Ar 1.67、 2原子分子で H2 γ=1.405、N2 γ=1.404、O2 γ=1.401 Cp-Cv=Rという関係を当てはめると 1原子気体で γ=5/3=1.666 2原子分子で γ=7/5=1.4 が対応する自由度です。測定はこれに「よく合っている」とひとまず考えることにしましょう。 1原子気体の並進の自由度3はすぐにわかります。これは多原子分子にも共通のはずです。 2原子分子ではエネルギーの分配される回転の自由度は2であるという事になります。この自由度2は剛体回転で分子軸に垂直な方向での回転が2つあるということに対応します。ここで剛体モデルが出てきます。でも分子軸方向の回転にはエネルギーが分配されていません。(なぜ、分子軸方向の回転にはエネルギーが分配されないのだろうかというのは新たに浮かび上がった別の問題であるという事になります。) この枠組みを3原子分子に当てはめるとどうなるでしょうか。 直線型 γ=7/5=1.4  2原子分子と変わらないはずです 非直線型 γ=8/6=1.33  4原子分子以上でも剛体モデルであるかぎり、γの値は同じになるはずです。 測定値は 直線型  CO2 γ=1.304(15℃)  C2H2 γ=1.31(-71℃) 非直線型 H2O γ=1.324(100℃) γ=1.310(200℃)      HCN γ=1.31(65℃) CH4 γ=1.31(10℃) これはもう「かなりずれている」と判断しなければいけない数値です。 2つ問題が生じたことになります。 (1)剛体モデルでは3原子分子以上ではずれが目立ってくる。 (2)直線型の分子で分子軸方向の回転にはエネルギーが分配されないのはどうしてか。 2原子分子では剛体モデルが「よく合う」としてきました。でも他の2原子分子ではどうでしょう。 Cl2 γ=1.355、 I2 γ=1.30 CO γ=1.404  HCl γ=1.41 ハロゲンではずれが目立ちます。 剛体モデルが当てはまらないというのは分子内部の自由度が関係してくるということです。 余分の自由度があると考えることができます。γ=1.4からのずれを考えてみましょう。 (7+α)/(5+α)=1.3としてみます。α≒1.7になります。 このような余分の自由度はどうして出て来るのかが問題になります。 これらは量子力学の発展過程の中で問題になってきたことです。 統計力学も関係してきます。 振動はポテンシャルの中での運動ですから量子力学で考えると不連続なエネルギー準位が存在することが分かります。エネルギー準位の間隔は結合の強さによって変化します。温度によってそれらの準位のどれくらいまで励起されているのかが変わります。これは統計力学の出てくる場面になります。 2原子分子で起こる振動は原子間の距離の変わるような振動です。これは結合の強さがまともに響いています。ハロゲンは反応性に富む元素のグループです。熱解離の起こりやすい元素だと言ってもかまいません。 常温である程度振動が励起されていることを表しています。振動の場合、1つのモードに対して自由度は2になります。2つの方向の振動という意味ではなくて位置エネルギーと運動エネルギーに対応しての2です。上で求めたα=1.7というのは十分に励起したとしたら2になるのだが温度がそれほど高くないので1.7になったという意味です。 水の場合、起こりやすい振動は変角振動です。H-Oの長さの変わる振動は起こりにくいです。 H-O-Hの角度は104.5°です。この角度を中心とした角度変化が起こるような振動です。 二酸化炭素は3原子直線型です。γの値は1.4のはずですが1.3まで下がっています。 かなり変角振動が励起していると考えられます。 CO2は変角振動のモードが2つあります。縮退しています。残りの2つはC=Oの長さの変わる振動です。H2Oの場合も、CO2の場合も励起されやすい変角振動が極性が変化するような振動になっています。赤外線の吸収が起こりやすい大気中の成分であるということです。 外部から熱を加えた場合、熱は全て原子の運動に配分されています。電子は原子の動きに乗っかって一緒に動きます。原子とは別に電子だけが状態を変えるというのは熱励起では普通起こりません。 2原子分子での分子軸の方向での回転を考えないのは無視したのではなくて「起こらない」、または「考えようがない」という事です。1原子気体の自由度を3としたところでも原子の回転は考えていませんね。確かに原子にも大きさはあります。この大きさは電子の分布している範囲のことです。その大きさが問題になる場合もあります。剛体球のモデルを当てはめる時もあります。でも熱励起を考えている時に原子の回転は考えないのです。原子核の周りの電子の分布を加熱で回転させることなどできないからです。電子は加熱する前から空間全部に広がって分布しています。中心にある原子核に向きを当てはめることも無理な話です。 2原子分子で γの値が1.4を超えているものがあります。 これは回転に少しブレーキがかかっている、自由回転ではないというように考えればいいでしょう。 他の分子からの影響が出てきているという事ですから理想気体の性質からのずれが原因であると考えてもいいようです。Cp-Cv=Rの関係はdV/dT=一定という性質から出てきています。低温ではこの関係が当てはまらなくなってきます。 長くなりましたがこんなことでどうでしょう。 「?」のつく内容もあるかもしれません。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

とても丁寧で具体的なご説明を頂きまして、大変興味深く拝読しました。ありがとう御座います。

  • 回答No.3

Q1 運動エネルギーが小さいから無視できるのではなく、そもそもそのような回転の自由度は存在しません。 大まか言うと、重心の位置と分子の形状(各原子間の距離)が変化しないような原子核(たち)の運動を「回転」と呼びます。z軸周りに二原子分子を回転させようとしても原子核は移動しないですよね。原子核が移動しないという事は回転しないという事になるんです。 ※同様の理由で、単原子分子(主に希ガス)の回転の自由度は0です。 Q2以降は既にある回答の通りなので省略。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答頂きましてありがとう御座います。 他の回答者様にもお聞きしましたが、以下の追加の質問についてご教示頂けますととても幸いです。 ---------以下 写しにて失礼します --------------------- ところで、振動は含めないと言うことは、考慮すべきは並進運動と回転運動ですが、並進運動は常にXYZの三つ、回転については直線型分子だと2、屈曲した分子ならば3と、「常に」考えてもよいでしょうか。例えば、4原子分子の場合でも、直線ならば回転は2、屈曲ならば3でしょうか。 何を疑問に思っているかと申しますと、複雑な形をした分子、例えば、人間のように四肢があるような形をした分子の場合、右手だけの回転、左足だけの回転、など複雑な回転機構が考えられそうですが、剛体と考えるならば、このような回転の自由度は考慮しなくてよさそうですが、いかがでしょうか。的外れな疑問をお聞きしているようで心配しておりますが、どうかご教示頂ければと思います。 宜しくお願い致します。 ----------------------------------------

  • 回答No.2

振動についてだけお答えします。 分子などの振動は量子化されているので振動数をνとした場合、hνの整数倍以外のエネルギーはとれません。このため熱エネルギーがhνに相当するあたりまで温度が上がらないと振動はおきません。(古典的な振動子なら振幅が小さくなるだけでどんな温度でも振動はある。) 多くの場合、分子振動の振動数は赤外領域にあり、このエネルギーhνを温度に換算すると1000度とかそういう高温になります。通常熱力学で扱っている温度域はこれよりずっと低い温度なので、振動は励起されていません。これが振動を除外する理由です。 このような高温でも熱分解しないような分子なら、高温領域での振る舞いを見るには振動の自由度を入れる必要があります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答頂きましてありがとう御座います。なるほど、振動については、光が関わってくるわけですね。分光分析の世界がここで繋がるとは思いも寄りませんでした。ありがとう御座います。 追加の質問としてお伺いさせてください。頂いた回答を読みまして、考えたのですが、分光分析で温度変化を補正しないのは温度が分子振動に殆ど影響を与えないからと考えてよいでしょうか。赤外線分析において温度を考えなかったのは何故だろうと思ったのですが、こういうことが背景にあるのでしょうか。 また、他の回答者様にもお聞きしましたが、以下の追加の質問についてご教示頂けますととても幸いです。 ---------以下 写しにて失礼します --------------------- ところで、振動は含めないと言うことは、考慮すべきは並進運動と回転運動ですが、並進運動は常にXYZの三つ、回転については直線型分子だと2、屈曲した分子ならば3と、「常に」考えてもよいでしょうか。例えば、4原子分子の場合でも、直線ならば回転は2、屈曲ならば3でしょうか。 何を疑問に思っているかと申しますと、複雑な形をした分子、例えば、人間のように四肢があるような形をした分子の場合、右手だけの回転、左足だけの回転、など複雑な回転機構が考えられそうですが、剛体と考えるならば、このような回転の自由度は考慮しなくてよさそうですが、いかがでしょうか。的外れな疑問をお聞きしているようで心配しておりますが、どうかご教示頂ければと思います。 宜しくお願い致します。 ----------------------------------------

  • 回答No.1
  • Quarks
  • ベストアンサー率78% (248/317)

Q1:そのとおりです。 Q2:振動の運動エネルギーを考慮していない理由ですが、それは、通常、分子を「剛体」と見なしているからです。分子を構成している原子が互いに位置関係が固定されて変化できないのが剛体ですから、振動は最初から考慮外になっているわけです。  もちろん、現実の分子は剛体ではないですから、振動の運動エネルギーを考えることはできます。 Q3:そのとおりです。そのように、考えるのが自然でしょう。 Q4:これも、ご推察のとおりです。 3個以上の原子からなる"剛体"としての分子の場合、古典物理学的には自由度は最大6なのですね。  実在の分子は、剛体ではなく、また分子間には相互作用もありますから、内部エネルギーは、並進運動・回転運動の運動エネルギーだけでなく、振動の運動エネルギーや相互作用に基づく位置エネルギーも含むものと考えるのが自然だと思います。  実際、実在の分子たとえば水分子のモル比熱などは、単純な屈曲した3原子からなる剛体分子とみなしたときの"理論値"とはかけ離れた値になっています。  しかし、頭に入れておかなければならないことがあります。振動や相互作用を考慮すれば、いくらでも実在の物質の内部エネルギーや、それと関連するモル比熱に迫っていけるのかと言えば、残念ながらそうではないようです。  正しく理解するには、量子力学が必要なのだということです。ここにも、古典物理学の限界が深淵となり、行く手を阻んでいるようです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

丁寧に回答頂きまして本当にありがとう御座います。 振動について量子化されているということで、振動は内部エネルギーの際に考慮にいれないということ良く分かりました。量子力学をよく勉強してさらに理解を深めたいと思います。 ところで、振動は含めないと言うことは、考慮すべきは並進運動と回転運動ですが、並進運動は常にXYZの三つ、回転については直線型分子だと2、屈曲した分子ならば3と、「常に」考えてもよいでしょうか。回答頂いた文面の中で、 『Q4:これも、ご推察のとおりです。 3個以上の原子からなる"剛体"としての分子の場合、古典物理学的には自由度は最大6なのですね。』 ということは、この考えは正しいかと存じますが、いかがでしょうか。 例えば、4原子分子の場合でも、直線ならば回転は2、屈曲ならば3でしょうか。 何を疑問に思っているかと申しますと、複雑な形をした分子、例えば、人間のように四肢があるような形をした分子の場合、右手だけの回転、左足だけの回転、など複雑な回転機構が考えられそうですが、剛体と考えるならば、このような回転の自由度は考慮しなくてよさそうですが、いかがでしょうか。的外れな疑問をお聞きしているようで心配しておりますが、どうかご教示頂ければと思います。 宜しくお願い致します。

関連するQ&A

  • 内部エネルギーと運動の自由度

    いつもお世話になっております。 今、熱力学の練習問題を解いていて、分子の自由度のところで詰まってしまいました。 1つは内部エネルギーの計算方法についてです。 単原子分子は全自由度が3なので内部エネルギーUが U=3RT/2 で与えられるというのはなんとなく理解できました。しかし2原子分子についての内部エネルギーが U=5RT/2 となる理由がよくわかりません。2原子分子は並進自由度3、回転自由度2、振動自由度1で、全自由度は6となるので内部エネルギーは U=3RT となるような気がします。振動自由度1を無視して計算するのでしょうか? もう1つは2原子分子や直線分子の回転自由度が2になる理由についてです。 直線分子の回転自由度が2となるのは、結合軸についての回転を考えないからですよね?それはなぜなのでしょうか。 ご教授よろしくお願いします<m(_ _)m>

  • 熱力学:気体の比熱の分子運動論的記述について

     気体の比熱は1Kあたりの内部エネルギーの変化 (3/2)R=分子の運動エネルギー N m(v2)av /2(N:アボガドロ数、m:分子の質量、v:分子の自乗平均速度)と捉えることができ、例えばx方向の並進運動のみ(1自由度)に注目するとその1/3なので、結局比熱は1自由度あたりR/2(Rは一般ガス定数)と表されます。2原子分子について並進運動の次に特性温度を超えると量子効果により回転の自由度が2つ追加され(比熱は5R/2)、さらに次の特性温度を超えると振動の自由度がさらに2つ追加され比熱は7R/2となります。  さて、教えていただきたい点ですが、例えば回転の自由度ひとつあたりの1Kあたり内部エネルギー変化(比熱変化)についても並進運動の1自由度あたりの運動エネルギー変化(= N m(v2)av/2)と等しいのはなぜでしょうか。さらに振動についても。事実としてはそれでいいのですが、理論的な解釈を易しく解説して下さい。よろしくお願い致します。

  • 運動エネルギー

    二原子分子以上の気体では運動エネルギーとして 並進、回転、振動運動があるが、 単原子分子では並進運動エネルギーしかありません。 なぜ、回転、振動は起こらないのでしょうか? それとも起こってはいるが、回転や振動しても単原子なので 相互作用のようなものが起こらず、エネルギーとして観測されないと いう意味なのでしょうか? 質問よろしくお願いいたします。

  • 分子の運動エネルギーについて

    単原子分子n[mol]の内部エネルギーは3nRT/2、二原子分子は5nRT/2、三原子分子は6nRT/2となっていますが 手持ちの教科書には分子1個の運動エネルギーについては3kT/2としか書いてありません。 分子1個の運動エネルギーもこれに比例して3kT/2→5kT/2→6kT/2と増えるのでしょうか それとも分子1個の場合はどんな分子でも3kT/2なのでしょうか 回答よろしくお願いします

  • 2原子、3原子分子の自由度について

    2原子、3原子分子に対して回転運動・振動運動のそれぞれの自由度はいくらになりますか? 調べれば調べるほど、 2原子分子については回転3振動0だったり、回転2振動1だったりします。3原子分子でも回転3振動3だったり、回転2振動4だったりします。 正しい答えが知りたいので説明お願いします。(>_<)

  • 単原子分子について

    二原子分子は「2つの原子からなる分子」なので 単原子分子は「1つの原子からなる分子」だと思っています. しかし,中学校のとき「銅や鉄は分子を作りません」と習ったような気がします. 銅や鉄は1つの原子でも,その性質を示すので単原子分子ではないのですか? もし「銅や鉄が分子を作らない」と言うのが正しいなら, 単原子分子(ヘリウムなど)は分子としてみなされるべきなのですか?

  • 「分子の内部エネルギー」とは 

    「分子の内部エネルギー」とは並進運動、回転運動、振動運動で合っていますか? 間違っていましたら訂正をお願いします。

  • 分子の回転運動についてですが…

    物理化学の教科書に、直線形分子の回転運動の自由度が2で、非直線形分子では3であると記述されていました。なぜそうなるのかが図でみても今ひとつ分かりません。。教えて下さいm(_ _)m あと、直線形分子で核を結ぶ軸のまわりの回転運動を除外するのはなぜなんでしょうか?

  • 分子運動における運動エネルギーと熱エネルギー

    ご覧頂きありがとうございます。 昔、高校と大学で教わった事をふと思い出し、疑問が浮かびましたので質問いたしました。 様々な分子は回転、並進、伸縮運動を繰り返してますよね。外部から熱エネルギーを加えるとそれらの運動も活発になると記憶しています。この場合、熱エネルギーが運動エネルギーに変わったと考えても宜しいでしょうか。 しかし、水に熱を加えると分子運動が活発になるのと同時に温度も上がりますよね。 これは外部からの熱エネルギーが運動エネルギーに完全に変わることが出来ず、熱エネルギーとして発散していると考えて宜しいでしょうか。

  • 定積モル比熱

    今三原子分子の定積モル比熱Cvを考えています。 私は単原子分子が(3/2)R,二原子分子が(5/2)Rなので三原子分子は(7/2)Rだと考えていました。おそらくどこかでそう習った記憶もあります。しかし確証がないというか、なぜそうなるのかが理解できていません。定積モル比熱は内部エネルギーを温度で微分して得られるのはわかるのですが…。 恐れ入りますがご指摘をお願い致します。