• ベストアンサー
  • 困ってます

等差数列の中間の項の問題

Σベストの例題228の等差数列の中間の項の問題について質問です。 -8と18との間にn個の数a1,a2,…an入れ -8,a1,a2…,an,18 が公差1/2の等差数列になるようにしたい。個数nをいくらにすればよいか。また、公差2の等差数列になるとき、個数nはいくらか。 という問題で、着眼に末項18は第(n+2)項にあたるとありました。 しかしなぜ(n+2)になるのかがいくら考えてもわかりません。なのでどなたか教えてください。(できればわかりやすくお願いします…)

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

第1項が-8 第2項がa1 第3項がa2  :  :  : 第n項がan-1 第n+1項がan 第n+2項が18

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 等差数列の問題です。

    等差数列の問題でいきなりつまずいています。 初項5、公差3の等差数列{an}について、次の問いに答えよ。 この問題の解答で an=5+(n-1)×3 すなわち an=3n+2 とあるのですが、すなわちの部分が分かりません。 等差数列以前の問題でしょうか? よかったら教えてください。

  • 等差数列

    初項-60、第15項までの和が-60である等差数列がある。 (1)初項から第何項までの和が最小となるか?   答.第8項 (2)初項から第何項までの和がはじめて900を超えるか?   答.第26項 という問題がありました。 (1)は公差が8というのを求め、an=a+(n-1)d<0を満たすnを求めてやり、n<8.5がでたので、答えは第8項となりました。 問題は(2)で、僕の考えではSn=1/2{2a+(n-1)d)}>900を満たすnを求めればいいと思ったのですが、そうすると、n>14.45…となってしまいます。 どこがいけないのでしょうか。回答よろしくお願いします。

  • 等差数列です。

    等差数列{an}はa2+a4=16, a3+a5=22を満たしている。このとき、数列{an}の初項(ア),公差(イ)である。また等差数列{bn}は初項から第5項までの和が45、第6項から第10項までの和が145である。この時数列{bn}との初項は(ウ),公差は(エ)である。二つの数列{an}に共通な項を小さい順にC1,C2,C3....,,,,とすると数列{Cn}は初項が(オ)、公差が(カキ)の等差数列である。 また、二つの数列{an}と{bn}の少なくとも一方に含まれている項を小さい順に並べて、d1,d2,d3,......とする。ただし共通な項はいずれか一方のみを並べるものとする。この時、dn>100を満たす最小の整数nは(クケ)であり、d(クケ)=(コサシ)であるさらにΣ[i=k,n],(クケ)=(スセソタ)である。 よろしくお願いします。上手く書けませんでした御理解いただけたでしょうか。

  • 等差数列

    等差数列{an}はa2+a4=16, a3+a5=22を満たしている。このとき、数列{an}の初項(ア),公差(イ)である。また等差数列{bn}は初項から第5項までの和が45、第6項から第10項までの和が145である。この時数列{bn}との初項は(ウ),公差は(エ)である。二つの数列{an}に共通な項を小さい順にC1,C2,C3....,,,,とすると数列{Cn}は初項が(オ)、公差が(カキ)の等差数列である。 また、二つの数列{an}と{bn}の少なくとも一方に含まれている項を小さい順に並べて、d1,d2,d3,......とする。ただし共通な項はいずれか一方のみを並べるものとする。この時、dn>100を満たす最小の整数nは(クケ)であり、d(クケ)=(コサシ)であるさらにΣ[i=k,n],(クケ)=(スセソタ)である。 よろしくお願いします。昨夜投稿しましたがうまく投稿出来たかどうかわからないので再度投稿しました。もし重なっていましたらごめんなさい。よくわからないので。 投稿の注意点も教えていただけたら嬉しいです。

  • 等差数列の問題です。

    初項が80、公差が-3の等差数列の初項から第n項までの和が最大となるのは、n=○○のときで、その和は○○○○である。 この問題を教えて下さい。 宜しくお願いします。

  • 等差数列の問題

    クリックありがとうございます^^ ★数列{an}の項を、初項から2つおきにとってできる数列a1,a4,a7,……は等差数列であることを示し、その初項と公差を求めよ。 ※anのn a1の1 のところは右下に小さく書かれているやつです  それと、数Bですがベクトルは未学習です。 この問題について説明をお願いいたします。 ヒントだけでもかまいません_(._.)_

  • 数学Bの問題

    数列に関する問題 下記の問題の解答と解説もお願いします 1, 一般項が次の式で表される数列について (1) an=3n-4 初項から第5項まで (2) an=(2n+1)^2 初項から第5項まで 2. 次の等差数列の一般項と第30項 (1) 初項 -2, 公差 3 (2) 9,3,-3,-9 ・・・ 3,次の等差数列の末項が第何項なのか (1) 3,8,13,・・・,38 (2) -4,-6,-8,・・・,-42 4, 第6項が -2, 第15項が 25, である等差数列{an}の初項,公差,一般項 5, 次の等差数列の和 (1) -2,1,4,7,10,13,16,19 (2)初項 -9, 公差 -4, 項数 36 (3)初項 16, 公差 -4, 項数 n 6, 次の等比数列の一般項 (1) 3,-6,12,-24・・・ (2) 3, -3/2, 3/4, -3/8,・・・ 7, 次の等比数列の末項は第何項か (1) 1,2,4,8・・・,512 (2) 3,12,48・・・,768

  • 第10項が30、第20項が0である等差数列{an}

    第10項が30、第20項が0である等差数列{an}がある。 (1)初項と公差を求めよ。 (2)-48は第何項か。 わかりません(-。-; 誰か教えてください(>人<;)

  • 数列

    An=3-4n で与えられる等差数列{An}があるとき、 {An}の項を初項から2つおきにとってできる数列A1,A2,A3・・・は等差数列であることを示し、その初項と公差を求めよ という問題なんですが、 問題のヒントに、 2つおきにとってできる数列を{Bn}とすると Bn=A3n-2(n=1,2,3,4,・・・) ってかいてあるんですが、この意味が分かりません どうやってこの式が導かれるのでしょう?

  • 等差数列であることの証明

     数列{an}、{bn}が等差数列ならば、{a5n}も等差数列であることを証明せよ。 で、それぞれの公差をc、dとして、 a5(n+1)-a5n=c    という考え方をするらしいのですが、 どうしてそうなるのかと、解答のしかたが分かりません。 よろしくお願いします。