• ベストアンサー
  • すぐに回答を!

運動方程式について

軽い糸に質量mのおもりAと質量m/2のおもりBをつなぎ糸をなめらかに回転する軽い滑車に掛けた。 ただし、おもりが滑車に衝突しない範囲で考える。重力加速度の大きさをgとする。 おもりA , Bは一定の加速度で運動をした。おもりA , Bの加速度の大きさをaとする (1)運動方程式を立てるとすると Aの場合下向きの加速度を正としてma=mg-T, Bの場合上向きの加速度を正としてma/2= T-mg/2 となりますよね つまり(運動方程式を立てる時、それぞれの物体について、それぞれ加速度の向きを考えて解かなければならない)ということですよね? この場合A , B全体で加速度を上向きに正としたり、下向きに正とするのはだめということですよね?

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数3
  • 閲覧数266
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
noname#224896
noname#224896

鉛直下向きを正方向とおけば,問題ないですよ. 2つの物体の運動方程式は,次のように表されます. ma=mg - T ...(1) (m/2)(-a) = -T +mg/2 ...(2) な~んだ(2)は,全く同じじゃんかと思ったらいけません. それぞれに,符号でさえも意味があるのですから. ++++++++++++++++++++++++++++++++++++++++++++++++++++ どちらかを正方向と定めるのは大切です. (明らかに動いている方向と反対方向を正方向とおくと,あまのじゃくですね.) ---------------------------------------------------- そして,それを2つの物体の運動を1つの繋がりという“1つの系”として観た場合の解法もありということです. しかし,どちらに動くか微妙になってくると,やはり,“鉛直下向きを正方向とする”というようにした方が無難なのです. 動滑車とか入ってくると尚更です. ---------------------------------------------------- この場合に限り,例を挙げます. “仮定で,こっちに動くだろう”と解いてみて,加速度が負の値であれば,単に“最初の仮定の方向とは逆方向であった”ということだけです. ==================================================== 『これは,こうしたらどうなのかな?』と疑問に思うことは大切です. これからも,頑張って下さい^^

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます 確認ですが (1)鉛直下向きを正方向とおく (2)運動方程式を立てる時、それぞれの物体について、それぞれ加速度の向きを考える (1)、(2)のどちらでも解けるということでいいんですよね?

その他の回答 (2)

  • 回答No.3
  • Tacosan
  • ベストアンサー率23% (3656/15482)

#1 へのお礼中にある (1), (2) はもちろんどちらでも解けます. これは結局「系全体で 1つの座標系を使う」か「個々の物体に対してそれぞれ座標系を与える」かというところが違うだけで, 適切に対処すればいいだけの話です. とはいえ, 個人的には「系全体で 1つの座標系を使う」方が混乱しにくいと思うんだけどなぁ....

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます 丁寧にどうもです >個人的には「系全体で 1つの座標系を使う」方が混乱しにくいと思うんだけどなぁ.... そうですね、でもどちらでも解けるようにしときたいです

  • 回答No.2

>A, B全体で加速度を上向きに正としたり、下向きに正とするのはだめということですよね? 式の立て方によっては、可能です。 たとえば、それぞれの加速度を鉛直下向きにそれぞれ aA, aB としましょう。 運動方程式は、 maA = mg - T … (1) (m/2)aB = mg/2 -T … (2) となります。 ここに、さらに(暗黙に仮定されている)糸がたるまないという条件から、 aA + aB = 0 … (3) が課されます。 この(1)(2)(3)を連立して解くことで、問題を解くことができます。 質問文に書かれているものは、この(3)を使ってaBを消去したものに対応します。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます >aA + aB = 0 … (3) このように考えると分かりやすいですね 確認ですが 運動方程式を立てる時一つ一つの物体の加速度の向きをどちらか決める解き方でもいいんですね?

関連するQ&A

  • 滑車に関する運動方程式の問題

    質量・摩擦の無視できる定滑車R,Sがあって、 定滑車Sは天井に固定し、 定滑車Sにかけられた糸の一方にはおもりC(質量4M) もう一方には定滑車Rをつるす。 定滑車Rには一方におもりA(質量M)、 もう一方にはおもりB(質量2M)をつるす。 重力加速度をgとする。 空気抵抗は無視する。 はじめ静止させておいたおもりA,B,Cを同時に静かに放すと、 おもりC の地面に対する加速度の大きさはα 定滑車Rに対するおもりA,Bの加速度の大きさはともにβ となった。 定滑車RとおもりCを結ぶ糸の張力をTとすると、 おもりA、おもりBの運動方程式は、 A:M(β+α)=【    】 B:2M(β-α)=【    】 となる。 空欄を埋めよ。 という問題なのですが、 おもりAは滑車RとおもりBによって引っ張られ、 かつ重力がかかるから、 おもりAにかかる力は T/2 + 2Mg - Mg となり、 運動方程式は M(β+α)=【T/2 + Mg】 と私は導いたのですが、 解答を見ると【T/2 - Mg】となっていました。 解説を見る限りでは、 おもりAがおもりBによって引っ張られる力が考慮されていませんでした。 おもりBの運動方程式に関しても、 解答は【2Mg - T/2】となっていて、 おもりAに引っ張られる力が考慮されていません。 なぜ考慮されないのでしょうか? それとも解答が間違っているのでしょうか?

  • なぜ加速度が2a?滑車が2つくっついた時の運動方程式

    質量2mのおもりAと質量mのおもりBを糸aでつなぎ滑車K1にかける。さらに、この滑車と質量3mのおもりCを糸bでつなぎ、天井からつるしてある滑車K2にかける。糸a及び糸bは十分に長い。また滑車はいずれもなめらかにまわり、滑車と糸の質量は無視できる。重力加速度をgとする。はじめ、おもりAちおもりCを動かないように手で支える。 ここで、おもりAを静かに話すと同時に、おもりCに手で鉛直上向きに一定の力を加え続けたところ、おもりBは静止したままであった。糸aの張力はいくらか。 という問題なんです。 答えには、おもりAの運動方程式は、2m×2a=2mg-Tと書いてありましたが、ここで加速度がなぜ2aになるのかがわからなくて大変困っております。 もしわかりましたら、教えてください。 よろしくお願い致します。

  • 運動方程式

    運動方程式(長文失礼します) 写真は教科書の図をノートに写したものです。 (下の図についての教科書の記述) 質量mの物体に軽くて伸びない糸をつけて、鉛直上向きに引く。このとき、鉛直上向きを正として、意図が物体を引く力をTとし、物体に生じる加速度の大きさをaとすると、物体の運動方程式はma=T-mg。 (上の図についての教科書の記述) 滑らかな水平面上に、軽くて伸びない糸Cで繋がれた物体A,Bがある。Aを水平方向右向きに大きさFの力で引くと、A,Bは糸で繋がれたまま、ともに右向きに動く。この時、糸C がBを引く力の大きさをTとすると、糸C は同じ大きさT の力で、Aを左向きに引いている。A,Bの質量をそれぞれM,mとし、右向きを正として、加速度をaとすると、それぞれの運動方程式はA;Ma=F-T,B;ma=T、A,Bを一体と考えたときの運動方程式は、(M+m)a=F (疑問) (1)下の図の事象についてはmgを運動方程式に入れ、上の図の事象については、入れていないのはなぜでしょうか? (2)図にa(加速度の方向)が書かれていますが、これはどうやって判断して記入しているのでしょうか? まさか、「こうなりそう」で書いているわけではないでしょうから (3)上の図の教科書の記述 A,Bを一体と考えたときの運動方程式は、(M+m)a=F これはどのように考えて、立式しているのでしょうか? (4)両方の問題で軽くて伸びない糸と書かれていますが、これは質量を考えない事以外に何か問題に関係してきますか? どうか宜しくお願いします。

  • 滑車にかけられたおもりの問題

    1つのなめらかで軽い滑車に糸をかけ、糸の両端に質量がそれぞれm、M(m<M)のおもりをつけて静かにはなす。おもりの加速度はいくらか。また、糸の張力はいくらか。 僕が考えた解答は以下のとおりです。 質量mのおもりに対する運動方程式は(張力T、重力加速度gとすると) T-mg=m(-a) 質量Mのおもりに対する運動方程式は Mg-T=Ma しかし、解答を見てみると、 質量mのおもりに対しては T-mg=ma 質量Mのおもりに対しては Mg-T=Ma となっていて、質量mに対する運動方程式の中で、加速度に-(マイナス)がついていません。 m<Mだから質量Mのおもりのほうが下に下がる。よって力が下向きに生じているため加速度の+の方向を下向きとすると、質量mのおもりに生じる加速度は大きさは同じであるが向きが逆。したがってマイナスをつける・・・と考えたのですが、僕の考え方は、どこが間違っているのでしょうか? また、糸の張力はどちらのおもりでも等しい、ということが良く理解できません。糸の両端に同じ大きさの力が働いているなら、両端の張力は等しいということは分かるのですが、なぜ、両端に大きさの違う力が働いていても張力は等しいのでしょうか?

  • 運動方程式 滑車の張力について

    質量3MのおもりAと、質量MのおもりBを糸でつなぎ、滑車にかけて手を放す。 同時に滑車を加速度aで真上に引き上げたとき、おもりをつないだ糸の張力はいくつか? ただし、重力加速度はg(g > a)とし、滑車と糸の質量、滑車の摩擦、空気抵抗は無視する。 滑車を引き上げない問題であれば、それぞれのおもりについての運動方程式は立てられるのですが(加速度α,張力Tとして) A : 3Mα = T - 3Mg B : Mα = 3Mg - T 上記の式に、滑車の力を加えて解けば良いのかと思ったのですが、そこから先がどうにも上手くできません。 解き方(考え方)はこれであっているのでしょうか? 因みに答えは2/3M(g + a)でした。 よろしくお願いします。

  • 【力学】滑車の問題

    【力学】この問題がわからないので教えてほしいです 回答お願いします 質量が共にmであるおもりA、Bが図のような滑車の両端にぶら下がっています Aの加速度をα(上向きが正)として、滑車と糸の質量は無視できます (1)張力TをTとして、Aの周りの運動方程式をしてして欲しいです (2)同じくBの周りの運動方程式を示してほしいです (3)加速度αを求めてほしいです

  • 運動方程式と加速度について

    滑らかな水平面上に直方体で質量Mの板Aを置く。そして、軽くて伸びない糸の一端を板Aの右端につけ、水平面の端にある滑車を通して、糸の他端に質量mbの重りBをつりさげる。 滑車の摩擦は無視でき、重力加速度の大きさをgとする。 (1)板Aを支え、全体が静止した状態から静かに手をはなす。板Aの加速度の大きさをa、糸の張力の大きさをT₁として、板AとおもりBの運動方程式をそれぞれ立てよ。 (2)加速度の大きさa、張力の大きさT₁をM、Mb、gを用いて求めよ。 これがわかる方なるべく詳しい回答お願いします。 よろしくお願いします。

  • 運動方程式

     ↑ 30N  ○ A:0.70kg  |  |  ○ B:0.80kg 上の図のように、おもりAとBを軽くて伸びない糸でつないで、Aを鉛直上向き(真上)に30Nの力で引き上げました (1) おもりAとBの加速度の大きさは何m/s^2か(10m/s^2) (2) 糸がBを引く力の大きさは何Nか(16N) なんですけど、これの解き方がよくわからないです 運動方程式を使って解くわけですが 重力とかごっちゃになってよくわかりません 解き方とか公式とかつけて回答お願いします

  • 運動方程式について

    運動方程式について 運動方程式F=ma(ma=F)について質問があります。 個人的に理解を深めようと、 運動方程式に関する様々なHPを閲覧しているのですが、 ところどころで、F=maについては、 a=F/m や、m=F/a と変形することは誤りだ、 という記述が見られます。 これが意図することは、そもそもその式が成立せず、 正しい値が導けないという意味なのか、 それとも、そのような変形は、 運動方程式の理念のようなもの(?)に反するため、 行うべきではないということなのでしょうか。 そして、もしこのような変形が行われるべきでないとするならば、 「質量5.0kgの物体に糸をつけて鉛直上向きに100Nで引くときの加速度aの向きと大きさを答えよ」 という問題が出たときに、 どういった方法で解けばよいのでしょうか。

  • 滑車の問題

    糸1を定滑車と動滑車にかけて質量Mの小球Aをつるし、 動滑車には糸2で質量mの小球Bをつるして、A,Bを同じ高さに支えてからはなす。 糸と滑車の質量、摩擦は無視するものとし、重力加速度はgとする。 糸1がAをひく力(糸1の張力)をT1として、糸2がBをひく力(糸2の張力)T2をT1を用いて表せ。 動滑車に働く力を考えれば、2・T1=T2となると思ったのですが 運動方程式で考えると、小球Aの加速度をAとして 小球Aについて:Mg-T1=Ma 小球Bについて:T2-mg=m(a/2) となり、T2=3mg/2 - mT1/2M となってしまいます 一体どちらが正しいのでしょうか。また、間違っているほうはどこがおかしいのでしょうか。