• 締切済み
  • すぐに回答を!

【力学】滑車の問題

【力学】この問題がわからないので教えてほしいです 回答お願いします 質量が共にmであるおもりA、Bが図のような滑車の両端にぶら下がっています Aの加速度をα(上向きが正)として、滑車と糸の質量は無視できます (1)張力TをTとして、Aの周りの運動方程式をしてして欲しいです (2)同じくBの周りの運動方程式を示してほしいです (3)加速度αを求めてほしいです

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数1561
  • ありがとう数0

みんなの回答

  • 回答No.1

図でαのない場合(地上では)A・Bの質量が同じなら、ともに同じ重力加速度を受けてつりあっている状態ですね(動いている状態は考えられません)。 そこに、何らかの方法で上向きの加速度を加える、と解釈しますが、となればαは求めるものではないのでは?、αが不明の状態では、AまたはBの運動の状態を示す何らかの数値が必要では・・・・。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 滑車にかけられたおもりの問題

    1つのなめらかで軽い滑車に糸をかけ、糸の両端に質量がそれぞれm、M(m<M)のおもりをつけて静かにはなす。おもりの加速度はいくらか。また、糸の張力はいくらか。 僕が考えた解答は以下のとおりです。 質量mのおもりに対する運動方程式は(張力T、重力加速度gとすると) T-mg=m(-a) 質量Mのおもりに対する運動方程式は Mg-T=Ma しかし、解答を見てみると、 質量mのおもりに対しては T-mg=ma 質量Mのおもりに対しては Mg-T=Ma となっていて、質量mに対する運動方程式の中で、加速度に-(マイナス)がついていません。 m<Mだから質量Mのおもりのほうが下に下がる。よって力が下向きに生じているため加速度の+の方向を下向きとすると、質量mのおもりに生じる加速度は大きさは同じであるが向きが逆。したがってマイナスをつける・・・と考えたのですが、僕の考え方は、どこが間違っているのでしょうか? また、糸の張力はどちらのおもりでも等しい、ということが良く理解できません。糸の両端に同じ大きさの力が働いているなら、両端の張力は等しいということは分かるのですが、なぜ、両端に大きさの違う力が働いていても張力は等しいのでしょうか?

  • 物理 滑車の問題です!

    どうしても解けません! テストがせまっているので宜しくお願いします。 問題は次の通りです。 図のようにおもりA(質量m)、B(質量M)、C質量(2m)が定滑車((1)(3))と動滑車((2))にかけられ、はじめ静止させておく。次に、これらを静かに手を離すと、A、B、Cはすべて直線運動をした。重力加速度をgとし、糸の伸び縮み等は無視する。 (1)糸の張力の大きさをTとし、おもりA、B、Cの加速度をa、b、cとする。(すべて鉛直下向きが正)    A、B、Cの運動方程式をたてよ。 (2)糸の長さが変わらない事から、a、b、cの間に成り立つ関係式を書け。 (3)T、a、b、cを求めよ。 という問題です。m、Mの大小関係が無くても解けるらしいのですが、さっぱりです。 宜しくお願い致します!!

  • 高校力学 定滑車における糸の張力

    こちらは高校三年生です。 糸の張力を考察するときに、「糸の質量を無視する」とあると、運動方程式において糸の重力と加速度×質量の部分が無視できるので糸の張力は糸のどこでも一定だとできるという記述を目にしました。 「ma=T-T'-mg」  →「0=T-T'」 ⇔ 「T=T'」 (糸の質量をm、両端に張力T・T'が働いているケース) そこで質問二つ質問があります。 (1)定滑車の場合では糸についての運動方程式はどのような形になるのでしょうか? (ここでは、天井に定滑車をつるして糸をかけています) 定滑車と糸の間には垂直抗力が働き、それらを考慮して運動方程式を立てたのですがこの場合でT=T'(両端での張力が等しい)という結果が出せません... (2)重さの無視できる定滑車に働く合計の張力は2Tであるというのも、運動方程式から導き出せないのでしょうか?このときも糸と滑車の接している面全体に働く垂直抗力を考えると、訳が分からなくなってしまいました。 摩擦については無視していますが、ある時にどうなるのかもよかったら教えてください。. その他の条件、糸の伸び縮みなどはどの条件をどのように定めれば良いのか分からないのでもしあったらそれも含めて教えてくださると助かります。 もしも、運動方程式とはまた別のアプローチで「張力はどこでも一定」、「滑車には2Tの力が働く」のふたつを証明できるならばそれを教えてくださっても大丈夫です。 冬休みなので先生に会えなくて質問が出来ないので、投稿させていただきました。不足な点がありましたら教えてくださいm(_ _)m

  • 滑車に関する運動方程式の問題

    質量・摩擦の無視できる定滑車R,Sがあって、 定滑車Sは天井に固定し、 定滑車Sにかけられた糸の一方にはおもりC(質量4M) もう一方には定滑車Rをつるす。 定滑車Rには一方におもりA(質量M)、 もう一方にはおもりB(質量2M)をつるす。 重力加速度をgとする。 空気抵抗は無視する。 はじめ静止させておいたおもりA,B,Cを同時に静かに放すと、 おもりC の地面に対する加速度の大きさはα 定滑車Rに対するおもりA,Bの加速度の大きさはともにβ となった。 定滑車RとおもりCを結ぶ糸の張力をTとすると、 おもりA、おもりBの運動方程式は、 A:M(β+α)=【    】 B:2M(β-α)=【    】 となる。 空欄を埋めよ。 という問題なのですが、 おもりAは滑車RとおもりBによって引っ張られ、 かつ重力がかかるから、 おもりAにかかる力は T/2 + 2Mg - Mg となり、 運動方程式は M(β+α)=【T/2 + Mg】 と私は導いたのですが、 解答を見ると【T/2 - Mg】となっていました。 解説を見る限りでは、 おもりAがおもりBによって引っ張られる力が考慮されていませんでした。 おもりBの運動方程式に関しても、 解答は【2Mg - T/2】となっていて、 おもりAに引っ張られる力が考慮されていません。 なぜ考慮されないのでしょうか? それとも解答が間違っているのでしょうか?

  • 滑車に掛かる張力(左右の張力は等しい/異なる?

    滑車にかかる張力についてお伺いします。 添付の図面をご覧下さい。上段の図において、二つの物体(青)の加速度を求める、という典型的な物理の問題を想定下さい。この場合、「二つの張力Ta, Tbは同じ(Ta = Tb)」として考え、Ma = Ta ….(1)  ma = mg – Tb…(2) と二つの運動方程式を立てて加速度、さらに張力が求まります。 ここで疑問に思いました。 (Q1)これら二つの張力が同じである、ということの、前提条件というか根底は何なのでしょうか。よく、一本の糸だからそれに掛かる力の合力はゼロに なるのでどこでも張力が等しい、ということを物理の時間に聞いたことがあるのですが、納得しがたくおもっています。と言いますのも、図にありますように、滑車の端部の 糸にもTa、Tbが掛かっているため、糸内では合力はゼロになります。また、他の物理の問題で、添付図の下段のように、滑車の両端の糸に掛かる張力が異なる、という前提条件の問題で、それらの張力を求める、という問題も多々ありますし、むしろ滑車に関わる問題ではそちらの方が主流ではないかと思います。こういった問題を目にして、「どういうことが理由で、滑車の両端の張力が等しい、等しくない、が決まるのか」、を知りたいと思いました(滑車と糸の間の摩擦がゼロ、とか、滑車の質量や慣性モーメントがゼロ、など)。どうかご教示頂ければと思います。 私は滑車と糸の間の摩擦がゼロだと両端の張力が等しい、というように考えているのですが、明確に物理的にしっかりと理由を述べることができずに悩んでおります。 また、ここから新たな疑問となりますが、「糸の間の摩擦がゼロだと両端の張力が等しい」というのは、つまり下段の図で申し上げますと、Tc – Td = f (friction) = 0 ということですが、摩擦がゼロでない場合、Tc = Td = fとして、ここから回転の運動方程式を立てるときに新たな疑問が生じました。 (Q2) I: 滑車の慣性モーメント α: 滑車の角加速度 r:滑車の半径 Mf:摩擦によるトルク としますと、回転の運動方程式は、反時計回りを正とすると、 Iα = rTc – rTd – Mf となるのでしょうか、 それとも、摩擦によるトルクだけが回転をもたらしていると考え、 Iα = -Mf でしょうか。 この疑問が生じた理由は、ある滑車に関する問題で、解き方の中に摩擦によるトルクに関する記述はなく、単純に Iα = rTc – rTd とされていたからです。 TcとTdが同じでないならば、摩擦があるはずですが、この運動方程式に含まれていません。 なぜなのでしょうか。それとも、、「糸の間の摩擦がゼロだと両端の張力が等しい(摩擦があるからこそ、両端の張力は異なる)」というのは誤りなのでしょうか。 基本的なことと思いますが、物理の問題を解くときに、一体全体、どの問題では、張力はどこも同じと考えるのか、それぞれ異なると考えるのか、どう対処していたらいいのかわからず、困っております。図の上段のような問題は力学の問題でも比較的学び始めの頃に登場し その際は滑車について触れていないのが、力学の後半になって滑車が登場し、突如張力が両端で異なると、解答で出始めたの で混乱しております。混乱しているため、整理し切れていない、言葉がおかしい点などあるかと思いますが、もしそのようでしたら、 修正しますので、ご指摘下さいますと幸いです。 どうぞ宜しくお願い致します。

  • 運動方程式について

    軽い糸に質量mのおもりAと質量m/2のおもりBをつなぎ糸をなめらかに回転する軽い滑車に掛けた。 ただし、おもりが滑車に衝突しない範囲で考える。重力加速度の大きさをgとする。 おもりA , Bは一定の加速度で運動をした。おもりA , Bの加速度の大きさをaとする (1)運動方程式を立てるとすると Aの場合下向きの加速度を正としてma=mg-T, Bの場合上向きの加速度を正としてma/2= T-mg/2 となりますよね つまり(運動方程式を立てる時、それぞれの物体について、それぞれ加速度の向きを考えて解かなければならない)ということですよね? この場合A , B全体で加速度を上向きに正としたり、下向きに正とするのはだめということですよね?

  • 運動方程式 滑車の張力について

    質量3MのおもりAと、質量MのおもりBを糸でつなぎ、滑車にかけて手を放す。 同時に滑車を加速度aで真上に引き上げたとき、おもりをつないだ糸の張力はいくつか? ただし、重力加速度はg(g > a)とし、滑車と糸の質量、滑車の摩擦、空気抵抗は無視する。 滑車を引き上げない問題であれば、それぞれのおもりについての運動方程式は立てられるのですが(加速度α,張力Tとして) A : 3Mα = T - 3Mg B : Mα = 3Mg - T 上記の式に、滑車の力を加えて解けば良いのかと思ったのですが、そこから先がどうにも上手くできません。 解き方(考え方)はこれであっているのでしょうか? 因みに答えは2/3M(g + a)でした。 よろしくお願いします。

  • 滑車

    ありがとうございます。 円がうまく描けませんでしたが下の絵は質量M、半径aの円盤状の滑車で、おもりの質量はそれぞれm_1、m_2です。 重力加速度をgとして、以下の問題に答えてください。 なお、この滑車の慣性モーメントは1/2Ma^2とする。 (1) m_1=m_2で静止しているとき、滑車に働いている力のモーメントについて記してください。 (2) m_1=m_2のとき、m_1側のひもの張力をT_1、m_2側の張力をT_2とする。静止状態からそっと手を離したとき、静止位置からのおもりの変異をxとする。このときm_1側の座標軸を鉛直下向きにとると、m_2側は鉛直上向きにとったことになる。 m_1とm_2の運動方程式をそれぞれ記してください。 (3) 円盤の静止状態からの回転角をφとして、円盤の回転に関する運動方程式を記してください。 (4) xとφの関係式を記してください。 (5) (2)(3)(4)をもとに、錘の運動の加速度を求めてください。 (6) 静止状態のm_1の位置を原点として、m_1の位置と速度を時間を関数として表してください。 よろしくおねがいします。

  • なぜ加速度が2a?滑車が2つくっついた時の運動方程式

    質量2mのおもりAと質量mのおもりBを糸aでつなぎ滑車K1にかける。さらに、この滑車と質量3mのおもりCを糸bでつなぎ、天井からつるしてある滑車K2にかける。糸a及び糸bは十分に長い。また滑車はいずれもなめらかにまわり、滑車と糸の質量は無視できる。重力加速度をgとする。はじめ、おもりAちおもりCを動かないように手で支える。 ここで、おもりAを静かに話すと同時に、おもりCに手で鉛直上向きに一定の力を加え続けたところ、おもりBは静止したままであった。糸aの張力はいくらか。 という問題なんです。 答えには、おもりAの運動方程式は、2m×2a=2mg-Tと書いてありましたが、ここで加速度がなぜ2aになるのかがわからなくて大変困っております。 もしわかりましたら、教えてください。 よろしくお願い致します。

  • 滑車の問題

    糸1を定滑車と動滑車にかけて質量Mの小球Aをつるし、 動滑車には糸2で質量mの小球Bをつるして、A,Bを同じ高さに支えてからはなす。 糸と滑車の質量、摩擦は無視するものとし、重力加速度はgとする。 糸1がAをひく力(糸1の張力)をT1として、糸2がBをひく力(糸2の張力)T2をT1を用いて表せ。 動滑車に働く力を考えれば、2・T1=T2となると思ったのですが 運動方程式で考えると、小球Aの加速度をAとして 小球Aについて:Mg-T1=Ma 小球Bについて:T2-mg=m(a/2) となり、T2=3mg/2 - mT1/2M となってしまいます 一体どちらが正しいのでしょうか。また、間違っているほうはどこがおかしいのでしょうか。