連立漸化式から数列の一般項を求める問題

このQ&Aのポイント
  • 連立漸化式から数列の一般項を求める問題です。
  • 具体的な漸化式と初項が与えられており、その数列の一般項を求める方法について説明します。
  • 場合分けが必要ない場合についても考察し、解説書にない理由についても疑問を呈しました。
回答を見る
  • ベストアンサー

連立漸化式から数列の一般項をもとめる問題です

aは実数とする。x1=y1=2のとき x[n+1]=x[n]+ay[n]・・・・・・・・(1) y[n+1]=2x[n]+2ay[n]-2・・・・(2)     (n=1,2,・・・) から数列{x[n]}、{y[n]}の一般項を求めよ。 この問題で(2)へ(1)を代入し、x1=y1=1よりy[n]=2x[n]-2 (n=1,2,・・・)と分かりました。 この式を(1)へ代入して   x[n+1]=x[n]+a( 2x[n]-2 ) =( 2a+1 )x[n] - 2a(n=1,2,・・・)・・・・・* よって   x[n+2]=(2a+1)x[n+1] - 2a (n=1,2,・・・) -) x[n+1]=( 2a+1 )x[n] - 2a (n=1,2,・・・) --------------------------------------------------------   x[n+2]-x[n+1]=( 2a+1 )(x[n+1]-x[n]) (n=1,2,・・・) が得られました。すると2a+1=0のとき等比数列にならないので場合分けがいると思いましたが 参考書の解説には場合分けがありませんでした。これはどういうわけなのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • rnakamra
  • ベストアンサー率59% (761/1282)
回答No.1

2a+1=0のときでも{x[n+1]-x[n]}は等比数列になります。公比"0"の等比数列です。

okestudio
質問者

お礼

ありがとうございました 。

関連するQ&A

  • 漸化式について。

    a_1=1, a_(n+1)=3a_n+4nで定められた数列{a_n}の一般項を求めよ。 という問題なんですが、解説を読んでも理解できません;; 解説には、b_n=a_n-(αn+β)とおいて、数列{b_n}が等比数列になるように、αとβを求め、一般項を出す、というやり方で書いてあります。 何故b_n=a_n-(αn+β)とおくのでしょうか?αn+βがどこから出てきたのか分かりません・・・。 また、{b_n}が等比数列になるようにαとβを求める、ということも理解できません。 何故、b_nは等比数列にならなければいけないのでしょうか? どなたか教えてください。お願いします。

  • だれか隣接3項間漸化式について教えてください。

    中年男性です。いま数列の勉強をしています。「なるほど高校数学 数列の物語」という読本を 読んでいるのですが、手に負えないので質問させてもらいました。  漸化式  A1=2, A2=3, An+2=5An+1-6An    n>=1 ・・・(1)  を満たす数列が特性方程式X^2=5X-6の解 X=2、X=3 から 2^n-1 と3^n-1に なることは実際に確かめて確認して納得したのですが、続くくだりから判らなくなって しまいました。  そのくだりとは“そこで次に問題となるのが、上記のような等比数列以外にこの  漸化式を満たす数列があるのか、ということです。  結論からいうと、特性方程式が異なる2つの解をもつときは、特性方程式の解を  公比とする等比数列の組み合わせを考えるだけで十分です。このことは次の  ようにして判ります・・・” と書いてあり特性方程式の解以外にないことの証明が始まるものと期待して読み進めたの ですが、漸化式の変形が始まり結局    An+1-2An=(A2-2A1)3^n-1    n>=1  ・・・(2)    An+1-3An=(A2-3A1)2^n-1    n>=1  ・・・(3)  という式になり、(2)式から(3)式を引くことで、    An=(A2-2A1)3^n-1-(A2-3A1)2^n-1     n>=1  となり、条件A1=2、A2=3を代入して一般項は    An=-1×3^n-1+3×2^n-1     n>=1 ・・・(4)  となりました。  これで特性方程式の解から導かれる数列以外に解がないことの  証明になるのでしょうか。また数列2^n-1や数列3^n-1が漸化式を  満たすことはすでにnに1、2、3・・・と代入して確認したのですが  一般項が(4)式であるということはどういうことなのでしょうか。  (4)式にnに1、2、3・・・と代入して確認していませんが(成立するのでしょうが)  このあたりの事情がよく判りません。  どなたか解説して戴けないでしょうか。

  • 数列の一般項

    次の条件を満たす数列 { a_n }の一般項を5種類求めたいのです。 数列 { a_n } の条件 : a_1 = 1, a_2 = 2, a_3 = 3, a_4 ≠ 4 例えば、 a_(n+2) = a_(n+1) + a_n とおいて、隣接3項間漸化式を解けば、ひとつ求めることができるというアイデアは浮かぶのですが、そのほかにどうすれば求められるでしょうか? ただし、nについて場合分けをするのは無しです。 よろしくお願いします。

  • 数列 漸化式

    A(n+1)=2A(n)+n (初項A(1)=1) という数列があるとします。 この一般項の形を求めるのに、この漸化式を満たす数列{B(n)}=αn+βを設定して、 この漸化式に代入、恒等式から{B(n)=-n-1}がわかります。 この{B(n)}の式が最初の漸化式を満たすわけですから、 A(n+1)=2A(n)+n B(n+1)=2B(n)+nの両辺を引いて A(n+1)-B(n+1)=2(A(n)-B(n))という等比数列が成り立つので、 A(n)=3*(2のn-1乗)-n-1   となると思うのですが、 ここから質問です。 なぜ最初の漸化式を満たした、B(n)=-n-1 と これまた漸化式を満たしている、A(n)=3*(2のn-1乗)-n-1 が異なっているのでしょうか? 回答お願いいたします。

  • 数列 (漸化式)

    A[1]=1 A[n+1]=4A[n]+2^n (n=1,2,・・・) {A[n]}の一般項を求めたいのですが 両辺2^nで割って、B[n]=A[n]/2^(n-1)とおくと、 B[n]+1=2(B[n]+1)とおけるから特性方程式より、B[n]が2^n -1と求められました その後はA[n]=・・・ どうすればいいのでしょうか? 等差数列なら A[1]+ΣB[k] k=1~(n-1)という感じで求められたのですが・・・ この数列は等差数列なのか、等比数列なのか・・・ 一見等差数列のようですが、+2^nがついていてこれも定数じゃないから、等差数列ともいえないな・・・と思いました。 階差数列?とはいえないかもしれないけど、B[n]が求まったらその後の段階としてどうすればいいのでしょうか、よろしくおねがいします。

  • 漸化式から数列の一般項を求める問題で・・

    連続した質問で申し訳ありません。 a(1)=1,2a(n+1)=a(n)+2の漸化式によって帰納的に定められた数列の一般項を求めよという問題なのですが・・ n=1 2a(2)=a(1)+2 n=2 2a(3)=a(2)+2 n=3 2a(4)=a(3)+2 ・・・・・・・・ n-2 2a(n-1)=a(n-2)+2 n-1 2a(n)=a(n-1)+2 よって (a(2)+a(3)+a(4)+…a(n-1))+2a(n)=a(1)+2(n-1) 2a(n)=1+2(n-1)-(a(2)+a(3)+a(4)+…a(n-1)) a(n)=(1+2(n-1)-(a(2)+a(3)+a(4)+…a(n-1)))/2 となると思うのですが、 この先、どのようにしたら回答の「2-(1/2)^(n-1)」に行き着くのかが分かりません。 どなたかどうか解説お願いします。

  • この数列の一般項の求め方

    2^2,4^2,6^2,8^2,・・・・ 簡単な数列なのですが、一般項の求め方で悩んでいます。 しらみつぶしではない解法です。 答えはan=(2n)^2です。 等比数列だからar^n-1=anに当てはめるのでしょうか?

  • 数列の一般項を求める問題。

    次の問題の解き方が分からなくて困っています。 数列AnをA1=50, (n+1)An=(n-1)A(n-1)(n=2,3,4・・・)で定める。 このとき一般項Anを求めよ。 答えは100/n(n+1)です。 どなたか分かりやすい解説よろしくお願いします。

  • 数列の問題なのですが・・

    等差数列an=3n-21、bn=9(n^2-10n+21)がある。rは実数とする。 数列cnはc1=140、c4=-23をみたし、数列bnに対して数列{cn-bn} は公比rの等比数列となる。このときのrの値は? また、cn(n=1,2,3・・)の最小値は?そしてcnの初項から第n項までの和 をUnとするとUn(n=1,2,3・・)の最小値は。 考え方と解き方が分かりません。 詳しい解説をどうぞよろしくお願いします。

  • 文字式を各項にとる数列の一般項

     初めまして、暇つぶしに数学の考えごとをしていると、分からないことがありましたので、質問させていただきます。数(?)列についてなのですが、知識は高校数学程度しかなく、しかも数列の分野はかなり忘れ気味です。高校数学に毛の生えた程度の内容ではとても説明できないという場合、高度な解説をしていただいても馬の耳に念仏ということになってしまいますので、その場合はあまり詳しく説明していただかなくても結構です。  {A(n)}=n^x  という文字の入った数列を考えます。この第1階、第2階、第3階……の階差数列を考えてゆきます。階差数列をダッシュをつけて表現しますと、具体的には、  {A'(n)}=A(n+1) - A(n)=(n+1)^x - n^x  {A''(n)}=(n+2)^x - 2(n+1)^x + n^x  {A'''(n)}=(n+3)^x - 3(n+2)^x + 3(n+1)^x - n^x  ……  ということになります。この一般の場合を考えたいのです。考え方として、{A(n)}、{A'(n)}、{A''(n)}、……の一般項を順番にならべた数列{B(m)}を考えて、その一般項を求めたいのだ、ということにもなります。  {B(1)}=n^x  {B(2)}=(n+1)^x - n^x  {B(3)}=(n+2)^x - 2(n+1)^x + n^x  ……  {B(m)}=???  ということです。まあ、式の形からいって、一般項はきっと  {B(m)}=Σ[k=1,m] {(-1)^(k+1)} * [m!/{k!(m-k)!}] * {(n+k-1)^x}  という形になるんだろうな、と想像はつきますが(m!/{k!(m-k)!} はパスカルの三角形の一般項)、どうしてそうなるのか分かりません。ご教示いただきたいです。 (あと、ついでの話になりますが、{B(m)}の第~階差数列を同様に考えて、同様に各一般項から数列{C(l)}とかも作れそうですね。その一般項を考えて……とやってると、終わりがなさそうです)  高校数学で簡単にできることをド忘れしてやしないか、不安でヒヤヒヤしますが……。