• ベストアンサー
  • すぐに回答を!

数学IIの積分の面積の公式について。(至急)

数学IIの積分の面積を求める問題について。 S=の後∫に-が付くかどうかはどうやって見分ければいいのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数852
  • ありがとう数4

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • R_Earl
  • ベストアンサー率55% (473/849)

> また負の数で答えが出た時、最初から計算しなおさなくても正の数に変換するだけで答えは出ますか? そうです。なので > 計算する前に分かることはできませんか? という事をする必要はないです。 計算前に判断したい場合、積分区間と関数の値で判断します。 具体的には、次の2点で判断します (積分される関数は積分区間内で、常に正の値か、常に負の値を取るものとします)。 [1] 積分区間が1 → 4や-2 → 3のように、「小さい方から大きい方」となっている [2] 積分される関数が、積分区間内で常に正の値 両方成り立っていればプラスです。 片方がなりたたなければ、定積分値はマイナスになります。 両方成り立っていないと、2回マイナスになって、プラスになります。 積分区間内で関数の正負が入れ替わる場合は、 ANo.2の方の回答内容に書いてあるように、積分区間を区切ると良いです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

御回答いただきありがとうございます。 助かりました。

関連するQ&A

  • 数学II 積分の問題

    数学II 積分の問題 次の曲線とx軸で囲まれた部分の面積を求めよ。 y=x^2(x-2) これはグラフを描くと、x軸とx=0で接し、x=2を通過します。 このとき、面積はx軸より下になるので計算式は S=-∫[0~2] x^2(x-2)dx です。 定積分 ∫[α~β] (x-α)(x-β)dx のとき、公式 -1/6(β-α)^3 が使えます。 では、質問にある問題のように x^2(x-2) のときはこの公式は使えないのですか? 学校でこの公式をつかって解いた問題は「xの係数が1(もし1でなかったらその数でくくる)かつxの次数は1」 だったので、こんな問題でも使えるのかどうかが分かりません。 普通に計算しても、この公式をつかっても答えは4/3になったのですが、一致したのは偶然なんでしょうか?

  • 数学II 積分

    数学II 積分 曲線 y=x^2 + x + 1 に原点から引いた2本の接線と、この曲線で囲まれた図形の面積Sを求めよ。 接点を(a,a^2 + a + 1)とおいて接線を求めると、y=(2a + 1)x - a^2 + 1 となります。 そしてこれが原点を通るから代入して計算すると a=1,-1 とでます。 よって接線は y=3x と y=-x とでます。 y軸を基準にして左側と右側に分けて考えて S=∫[-1~0] (x^2 + 2x + 1)dx + ∫[1~0] (x^2 - 2x + 1)dx ここまでが学校で言われた説明なんですが この積分の式が理解できません。 y軸の左側と右側では、囲む接線が違うから y軸より左と右で分けて計算して足すというのはわかるんですが 例えば左側を見たとき 囲んでいるのは曲線と接線とy軸じゃないですか? 「上の式 - 下の式」を積分して出る面積は 上の式と下の式だけで囲まれた面積ではないのですか? y軸も入れて3本の式で囲まれているのにこれでいいんですか?

  • 数学II 積分

    数学II 積分 次の曲線とx軸で囲まれた図形の面積を求めよ。 y=(x+1)^2(x-1) 二通りの方法で計算したら答えが違ってしまったので どちらかがどこかで間違っているのだと思うのですが なんどやっても違う答えになってしまい、どこが違うのかが分からないので 間違っているところを教えてください。 図を書くと、できる面積はx軸より下なので S=-∫[-1~1] (x+1)^2(x-1) dx =-∫[-1~1] (x+1)^2{(x+1)-2} dx =-∫[-1~1] (x+1)^3-2(x+1)^2 dx =-2∫[0~1] -2(x+1)^2 dx =4∫【1/3(x+1)^3】 [0~1] =28/3 これが一つ目のやり方です。 S=-∫[-1~1] (x+1)^2(x-1) dx =-∫[-1~1] (x+1)^2{(x+1)-2} dx =-∫[-1~1] (x+1)^3-2(x+1)^2 dx =-【1/4(x+1)^4-2/3(x+1)^3】 [-1~1] ←ここから違います。そのまま積分して計算しました。 =4/3 間違っているところを教えてください。

その他の回答 (2)

  • 回答No.2
  • alice_44
  • ベストアンサー率44% (2109/4758)

∫ の中身(被積分関数) が ≧0 になるように決めればよいのです。 符号が一定でないなら、積分区間を分割して、それぞれで考える。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

御回答いただきありがとうございます。

  • 回答No.1
  • R_Earl
  • ベストアンサー率55% (473/849)

> S=の後∫に-が付くかどうかはどうやって見分ければいいのでしょうか? 定積分の値を計算し、その結果が負の値になった時です。 負の値の面積を使いたくないので、 定積分値が負の数になったら、正の数に変換するんです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

御回答いただきありがとうございます。

質問者からの補足

計算する前に分かることはできませんか? また負の数で答えが出た時、最初から計算しなおさなくても正の数に変換するだけで答えは出ますか?

関連するQ&A

  • 数学II 積分の問題教えてください。

    数学II 積分の問題教えてください。 Q、次の等式を満たす関数f(X)を求めなさい。  途中計算詳しく書いていただくとありがたいです。 お願いします!!

  • 積分 面積 問題

    積分 面積 問題 2x^2-2xy+y^2=9で囲まれた面積を求めなさい。 2x^2-2xy+y^2=9を解くと、 x^2-2xy+y^2=9-x^2 (x-y)^2=9-x^2 x-y=±√(9-x^2) -y=±√(9-x^2)-x y=x±√(9-x^2) と解けます。 結果は同じですが、y=x±√(9-x^2)の±は (-+:マイナスプラス)とした方がいいでしょうか? 積分範囲は、どのように求めればよいでしょうか? グラフを描いたのですが、グラフから-3~+3となる ように思ったのですが、(x-y)^2=9-x^2から、 積分範囲を求めることができません。 以上、ご回答よろしくお願い致します。

  • 積分・面積

    積分の面積の問題をやってます。 Y=logX+1 Y=1/x x=eで囲まれた面積を求めなさいという問題が分かりません。 ∫e-1(logx+1-1/x)dxの式まではたどり着きましたが、logのある積分に混乱しています。

  • なぜ積分すると面積が求まるのか?

    なぜ積分すると面積が求まるのか?

  • 定積分と面積

    *あくまでも数学IIBまでしかやってない私の疑問です 定積分で面積が求められるという説明が教科書の説明では意味がよく分かりませんでしたが あるとき定積分で面積が求められるのは横幅が非常に小さい長方形に細かく分割してそれらを足し合わせると、その求めたい面積に近づく。 という説明を見て、すごく分かりやすいなぁと感心しました。 しかしそれと同時に疑問が沸いてきたのですが なぜ検定教科書等ではこういう説明の仕方はされてないのでしょうか? もちろんすべての教科書を見たわけではないんですが・・・。 そもそもdxのdは微小量を、積分というのは足し合わせる(この場合は微小面積を足し合わせる?)ということを意味するというのもその時初めて知りました。 教科書等にそれらが載ってないということは、この説明では分かりやすいだけで何か不適当な部分があるということでしょうか?

  • 線積分と面積分

    線積分と面積分 線積分と面積分で何が求まるのかわかりません。 線の長さと面積ですか?それとも線を積分、面を積分だから、次元が上がって、面積と体積が求まるのですか?

  • 積分の面積問題

    積分の面積問題です。 X^2-2X,X軸,X=3に囲まれた面積を求めなさいという問題で答えは8/3なのですがなりません。 ∫0から2 X^2-2Xdx + ∫2から3 X^2-2Xdx =[-1/3x^3+x^2]0から2 +[-1/3x^3+x^2]2から3 =-8/3+4-27/3+8/3+9-4 =0 こう解いたのですが… 間違いを教えてください、お願いします。

  • 積分で面積の出し方がわかりません。

    積分で面積の出し方がわかりません。 ・y=x^2 ・y=-2x-1 ・y=6x-9 この曲線と2直線で囲まれた部分の面積の出し方がわかりません。 曲線と直線の場合はわかるのですが、 お願いします。

  • 積分の面積について

    積分の面積について ふたつの放物線y=x^2-2x、y=-x^2+3xと二直線x=1.x=2で囲まれた部分の面積を求めよ。 ふたつの放物線y=x^2-5x,y=-x^2+4xと二直線x=1.x=2で囲まれた部分の面積を求めよ。 この2つの途中計算を交えながら教えてほしいです。

  • 定積分と面積・・

    「曲線C:x^3-x^2とCに接する異なる直線L,Mがある。CとLとで囲まれた部分の面積と、CとMとで囲まれた部分の面積とが等しいとき、LとMとは平行であることを示せ」という問題の解説で「f(x)=x^3-x^2とおくとf'(x)=3x^2-2xであるから曲線C上の点(α,α^3-α^2)における接線の方程式はy=(3α^2-2α)(x-α)+α^3-α^2 ∴y=(3α^2-2α)x-2α^3+α^2この右辺をg(x)とおくと、f(x)-g(x)=x^3-x^2-(3α^2-2α)x+2α^3-α^2=(x-α)^2(x+2α-1) β=1-2αとおくと f(x)-g(x)=(x-α)^2(x-β) でえあり、CとLとで囲まれた部分の面積S1は β≦αのとき、S1=∫{f(x)-g(x)}dx (定積分の区間は下端β、上端α)  α≦βのとき、S1=∫{g(x)-f(x)}dx (定積分の区間は下端α、上端β)・・・・・」と続いていくのですが「CとLとで囲まれた部分の面積S1は β≦αのとき、S1=∫{f(x)-g(x)}dx (定積分の区間は下端β、上端α)  α≦βのとき、S1=∫{g(x)-f(x)}dx (定積分の区間は下端α、上端β)」のところのいみがわかりません・・  教えてください!!