• ベストアンサー
  • すぐに回答を!

偏微分について

f(x)=1/√x^2+y^2+z^2について∂f/∂xの偏微分の解答をお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

>f(x)=1/√x^2+y^2+z^2 この書き方は変ですね。 f(x,y,z)=1/√x^2+y^2+z^2 に対して偏微分∂f/∂xが定義されるべきです。 偏微分のやり方はこの場合、x以外を定数とみて普通の微分をやればよろしい。 解りやすくするため r=√x^2+y^2+z^2 (1) と置くとf(x,y,z)=1/√x^2+y^2+z^2=1/r ∂f/∂x=(∂r/∂x)(d(1/r)/dr) (2) (1)よりr^2=x^2+y^2+z^2 両辺をxで偏微分して 2r(∂r/∂x)=2x よって ∂r/∂x=x/r   (3) d(1/r)/dr=-1/r^2 (4) (3)、(4)を(2)に代入して ∂f/∂x=(x/r)(-1/r^2)=-x/r^3=-x/(√x^2+y^2+z^2)^3

共感・感謝の気持ちを伝えよう!

その他の回答 (1)

  • 回答No.1
  • alice_44
  • ベストアンサー率44% (2109/4758)

高校で習った「微分」が、偏微分です。 a(xの2乗)+bx+c を x で微分するとき、 a, b, c は定数と考えていたでしょう? それと同じ。 ∂f/∂x を計算するときは、 y, z を定数と考えればよいのです。 それだけです。やってみて、補足をどうぞ。 偏微分は、単なる一変数関数の微分なので、 多変数関数を扱う全微分や、 合成関数の微分を考慮せねばならない常微分より、 ずっと簡単なのです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 偏微分の問題です

    スカラー関数f(x)=1/√x^2+y^2+z^2 について ∂f/∂x、∂f/∂y、∂f/∂z 。の偏微分の解答と解説をお願いします。

  • 偏微分

    微分できる関数f(t)に対して、z=f(x+2y)とおく。このzが∂z/∂x+∂z/∂y+z=0を 満たし、かつf(0)=2となるf(t)を求めなさい。 f(t)に対して、z=f(x+2y)とおくという意味がよくわかりません。 ∂z/∂x+∂z/∂y+z=0を計算すれば f(1)+f(2)+f(x+2y)=0 そこからわかりません・・ よろしくお願いしますm(__)m

  • 偏微分

    数学の問題なのですが、まったくわかりません。 助けてください。 次の関数の偏微分を求めよ。 f(x,y,z)= (1) 2x + 3x^2y + yz^2 + 4 (2) (2x - x^2y)(4y^3 + yz^2) (3) (cosx + 2xz) sin3y (4) 2z^4e^xy + y(sin2x)e^3x たとえば (1) では ∂f / ∂x = 2 + 6xy + yz^2 ∂f / ∂y = 2x + 3x^2 + z^2 ∂f / ∂z = 2x + 3x^2y + 2yz となるのでしょうか?? いまいち偏微分が理解できません。 できれば教えてください!!

  • 偏微分について 至急

    偏微分について至急願います。 1つ目ですが、例えばz=3x+1の関数で、yについて偏微分せよ。という問題が出たら、答えは0ですか? 2つ目ですが、f(x,y, z)=y-x-λ(x^2+y^2-2)をλについて偏微分すると、x^2+y^2=2になるのはなぜでしょうか。そもそもλを微分すると何になるのですか?お願いいたします。

  • 偏微分について

    偏微分 ∂/∂x(x/(x^2+y^2+z^2))の やり方について教えてください。 また、解答集では途中式として{(1/(x^2+y^2+z^2))-((2x)/(x^2+y^2+z^2)^2)} となり答えを導いているのですがこれ自体はどうやって導くのでしょうか? よろしくお願いします。カテゴリ違いだったら申し訳ないです。

  • ODE > 全微分

    全微分とは何かについて質問したいと思います。 読んでいたweb上の資料では以下の記載がありました。 ----- P(x,y)dx + Q(x,y)dy の微分形式が2変数f(x,y)の全微分になっているとき、すなわち df = ∂f(x,y)/∂x(x,y) dx + ∂f(x,y)/∂y dy = P(x,y)dx + Q(x,y)dy ----- 質問ですが、「全微分でない」というのは、ようするにf()という関数が別の変数(例えばz)に従属していて、fの微分をとった時にzの偏微分も入れないといけない、というようなことでしょうか?

  • 方向微分

    ω=f(x、y、z)上の点(x0、y0、z0)における(cosα、cosβ、cosγ)方向への方向微分を求めよ。 (ただしベクトル(cosα、cosβ、cosγ)はx軸、y軸、z軸とのなす角がそれぞれα、β、γであるような単位ベクトル(方向余弦)である) 問題は以上です。 私の解いた回答は ω=f(x、y、z)を一次化するとdω=(∂f/∂x)dx+(∂f/∂y)dy+(∂f/∂z)dz 点(x0、y0、z0)からの方向微分なので dω=∂f/∂x(x0、y0、z0)dx+∂f/∂y(x0、y0、z0)dy+∂f/∂z(x0、y0、z0)dz となる。 よって (cosα、cosβ、cosγ)方向への方向微分= {∂f/∂x(x0、y0、z0)cosα+∂f/∂y(x0、y0、z0)cosβ+∂f/∂z(x0、y0、z0)cosγ}/√cos^2α+cos^2β+cos^2γ なのですがうまくまとまらず、もっときれいな形になるのではないかと思うのですが・・・。 どなたかアドバイスをお願いします。

  • 偏微分についてです

    dz/(dt)ただし、z=f(x,y) x=cost y=sintと θz/(θu),θz/(θv)ただしz=sin(x-y) x=u^2+v^2 y=2uv の合成関数の微分を使って微分してください 時間がなくてこのような質問になってしまいました すみません

  • 偏微分、合成関数の微分法

    数学を進めているのですが、偏微分が絡んだ合成関数の微分法がわかりません。 大学数学のテキストは高校のと比べて、読み進めずらいです。助けてください。 (質問本文) 「」は私の理解の仕方と思ってください。まず、公式の理解から私の偏微分の考え方は正しいでしょうか? (1)関数z=f(x、y)にさらにx=x(t)、y=y(t)という関係がある時、「実質1変数で」、dz/dt=(∂z/∂x)×(dx/dt)+(∂z/∂x)×(dx/dt)(「それぞれxとyでzを偏微分して、x、yを今度は1変数なので、微分する」) (2)関数z=f(x、y)にさらにx=x(u,v)、y=y(u,v)という関係がある時,今度は変数が2つuとvがあるので、「どちらか片方で微分して」、∂z/∂u=(∂z/∂x)(∂x/∂u)+(∂z/∂y)(∂z/∂u)(「それぞれ片方の変数x、yでzを微分して(偏微分)さらに、そのx、yを関係式があるuで片方を選んで、uで偏微分する」) 次に、教科書の文章で、f(x、y)=0によって、xの陰関数y=f(x)が定められているとき、y‘=-Fx/Fyをxで微分すると、(dFx/dx)=Fxx+Fyy×dy/dx,dFx/dx=Fyx+Fyy×dy/dx(★)とあるのですが、★の微分はどのように考えて実行しているのでしょうか?(上の教科書の公式では全く上手くいきません)

  • 全微分?

    Z=f(x、y)というのは、全微分のことなのでしょうか?