• 締切済み
  • すぐに回答を!

偏微分の問題です

スカラー関数f(x)=1/√x^2+y^2+z^2 について ∂f/∂x、∂f/∂y、∂f/∂z 。の偏微分の解答と解説をお願いします。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

単に偏微分するだけ. 「解説」するほどのものもない.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 偏微分の問題??

    z=f(x,y),x=aCOSt ,y=bSINtの時、zをtの関数とみて、z'(0)を求めよ。という問題があるのですが、これってzがx=aCOSt ,y=bSINtで表されるfという関数で、zを微分してtが0の時どうなるんだっていう事ですよね? 解いてはみたんですが、z'(0)=f'(0,b)でいいのでしょうか。何か物足りないような気がするんですが、分かる方よろしくお願いいたします。

  • 微分の問題??

    Z=Z(x,y)がx+yだけの関数であるための必要十分条件はZⅹ=Zyである事を示せという問題があるのですが、これって、Zはxとyで表された関数で、Zをxで一回微分したものと、Zをyで一回微分したものが同じであって、それがx+yだけの関数である事を示せって事ですよね? なんで、x+yだけの関数になる!って事が言えるのか分からないのですが、誰か分かる方回答よろしくお願いいたします。

  • 関数の微分可能性に関する問題

    試験問題で解けなかった問題をやり直しています。 関数f(x)を  f(x)=x^2sin(1/x) (xが0以外のとき)  f(x)=0 (x=0のとき) と定めるとき、2変数x、yの関数 z=y^2+f(x) はx=0,y=0において全微分であることを示し、この関数のグラフとして 描かれる(x,y,z)空間内の曲面の原点(0,0,0)における接平面を求めよ。 授業にもあまりついていけてなかったので 今教科書を見ながら考えているのですが 方針としてはz=y^2+f(x)=g(x,y)とおいて g(x,y)が(x,y)=(0,0)で全微分可能⇔g(x,y)が点(0,0)で連続 ⇔(x,y)を(0,0)に近づけたときのg(x,y)の極限がg(0,0)と等しい ということを示そうと思うのですが、そんな感じの解き方でいいんでしょうか? 接平面はひとまず置いておいて、g(x,y)が(0,0)で全微分であることを とりあえず示そうと思うのですが、アドバイスお願いします・・・

  • 完全微分方程式は、平ら?

    完全微分方程式についてなのですが、zの全微分dzが0。このとき関数z = f(x,y)はもとから変化のない定数関数といえるので dz=0 ならば z = C(Cは任意定数) …と本には解説が書いてあるのですが、f(x,y)=zが定数ということは、xy平面に平行な平面ということでしょうか? よろしくお願いします。

  • 理工系問題

    スカラー場 f(x,y,z)=1/2(x^2+y^2+z^2)に関して 勾配∇fを求めよ 全微分dfを求めよ よろしくお願いいたします

  • 偏微分とかの問題を教えてください。

    (1) f(x,y)=sin log(x+2y)の(x,y)=(2,1)のまわりでの1次近似式と偏微分係数を求めなさい (2) f(x,y)=Arctan(x tany)の(x,y)=(a,b)のまわりでの1次近似式と偏微分係数を求めなさい (3) z=a-(x-b・e^(-y))^2、(aとbは定数)が次を満たすことを示しなさい。 2x(∂z/∂x)+(∂z/∂x)^2=2(∂z/∂y) (4) z=(1/a)(x+ay)^2+b、(a,bは定数)が次を満たすことを示しなさい (∂z/∂x)・(∂z/∂y)=2x・(∂z/∂x)+2y・(∂z/∂y) (5) Φ(ε)が任意の微分可能1変数関数であるとし、u(x,y)=Φ(2xy)とする。次が成立する事を示しなさい x・(∂u/∂x)+x・(∂u/∂y)=0 (6) Φ(ε)が任意の微分可能1変数関数とし、u=u(x,y)=(x+y)Φ(x^2-y^2)とする。 次が成立することを示しなさい y・(∂u/∂x)+x・(∂u/∂y)=u (7) Φ(ε)が任意の微分可能1変数関数であり、a,b,cが実定数であるとき、 u(x,y)=Φ(ax^2+2bxy+cy^2)とすると次が成立する事を示しなさい (bx-cy)・(∂u/∂x)-(ax+by)・(∂u/∂y)=0

  • 偏微分について

    f(x)=1/√x^2+y^2+z^2について∂f/∂xの偏微分の解答をお願いします。

  • 微分について分からないことがあります

    微分法について現在学んでいるのですが、分からない記述があり困っております。具体的には、以下の文を読んでいるときに、ふと「微分」という言葉を辞書で調べてみたときのことで、その辞書の解説の意味が分からず困っております。(読んでいた文ではなく、辞書の解説が分からないということです) (読んでいた文) 関数 f (x) において、一般の点(x , y)においては、接線の傾きが f ' (x) であるから、次のようになります。                  dy = f ' (x)dx ここで、dx と dy を、「微分」といいます。 f ' (x) は微分 dx の係数なので、「微分係数」とも呼ばれます。 (辞書の解説) 関数 y = f (x)が微分可能であれば、Δy = f (x + Δx)とおくと lim_Δx→0 Δx/Δy = f ' (x) であるから、次のように書くことが出来る。 Δy = f ' (x)Δx + ε, lim_Δx→0 ε/Δx = 0 したがって、Δy = f ' (x)Δx がこの関数の1次式としての近似を表わすわけで、このΔx,Δyを変数であらわしてdy = f ' (x)dx と書き、この正比例関数 df : dx →f ' (x)dxを f の微分という。また、変数 dx や dy のことを微分ということもある。f ' (x) が微分係数と呼ばれるのは、 f ' (x) が y の微分 dy における x の微分 dx の係数になっているからである。 この辞書の解説の、εが出てきたあたり、具体的には 「~次のように書くことが出来る。 Δy = f ' (x)Δx + ε, lim_Δx→0 ε/Δx = 0 したがって、Δy = f ' (x)Δx がこの関数の1次式としての近似を表わすわけで~」 の部分が全然分からなかったのですが、その前の記述に関しても不安なので、どうせなら全て解説していただけないかなと思っております。難しい日本語でもいいので、できるだけ論理の飛躍はしないで解説していただけないのでしょうか?「何を解説すればいいんだ!」と言われそうですが、もし自分が高校卒業程度のレベルの人に、この辞書の記述を優しく解説するとしたらこうなるだろうな、みたいな感じでお願いできないでしょうか・・・。重点的には先の部分をよろしくお願いします。 ちなみに私は大学1年生です。 回答よろしくお願いします。

  • 偏微分の問題です。

    偏微分の問題です。 f(x):R上微分可能な関数 f(y/x)について f_x(y/x)=f_y(y/x)は成り立ちますか? よろしくお願いします。

  • 微分の問題

    連続な導関数を持つ関数f(x)が、全ての実数x、yについて f(x+y)=f(x)+f(y)+xyが成り立っている。この時、f(0)を求めよ。 この問題で解説には全ての実数についてOKだから、適当に好きな数字を代入すればいいと書いてあって、作者はx=y=0を代入してf(0)=0としています。私はx=1、y=-1を代入して計算しようと試み ましたが、f(0)=f(1)+f(-1)-1となってこれ以上計算が出来ませんでした。どなたか詳しい解説解答をお願いします。